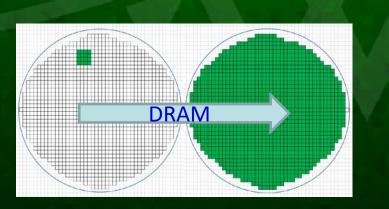


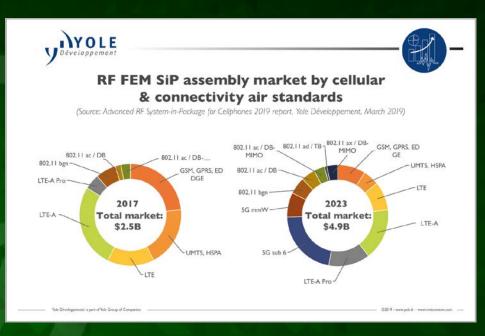
Probing 5G Devices Like It's No Big Deal

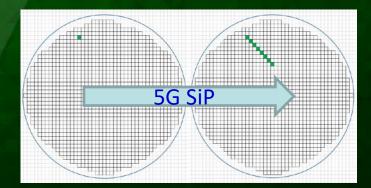
Tim Lesher, Patrick Rhodes FormFactor

June 2-5,2019

5G Devices are Upon Us!

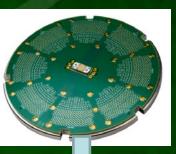

- We think we're used to having wireless devices all over the place, but 5G will take that much farther than cell phones and WiFi ever will on their own.
- A major difference? Short range infrastructure. You'll still have a phone in your pocket, and there will be traditional wireless networks, but 5G infrastructure will show up all over populated areas. And the handsets will have multiple mmWave devices inside.
- This will generate a huge number of wafers to test!

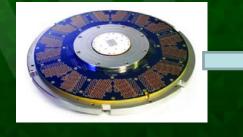

10X 10-100X More Connected Devices 3L **5G** 1000X Higher Mobile Data Volume 10-100X Higher Data Rates **5**X 67


Lesher, Rhodes -FormFactor

What Volume Production Means for 5G Test

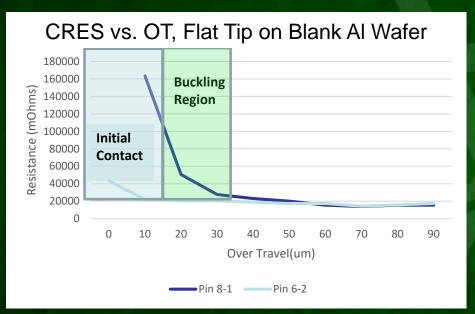
- A long time ago in a galaxy far, far away, people tested DRAM devices 16 or 32 at a time
- DRAM wasn't found in everything at that time, but now it's all over the place
- Those people that were testing 16 or 32 devices at a time would be broke if they did it that way today, but probe technologies advanced to often allow test of a full wafer in one shot
- It won't scale exactly the same way, but 5G devices may follow a similar path since they'll be everywhere, low parallel testing will be an unacceptable bottleneck
 - Potential Scenarios:
 - Total Handset Volume is 1.5B
 - 10% handsets are 5G FR2
 - 4 AiP per handset
 - 600M AiP per year
 - 90% yield
 - 5 second test time
 - 85% test cell OEE for x1, 80% for x8
 - Probe card lifetime = 1M TDs
 - Worldwide Testers:
 - X1: 125 testers
 - X8: 16 testers
 - Annual Probe heads
 - Single Site: 667 probe heads
 - X8 : 89 probe heads





Meeting Basic Probing Needs

- First step to production test for 5G devices: a <u>well-behaved</u> probe technology
- What constitutes well-behaved anyway?
 - A. Stable contact
 - B. Gentle probe marks
 - C. Thermal stability
 - D. Ease of repair
 - E. Long lifetime
 - F. Scalability
 - \rightarrow Minimal tantrums



Technologies out there today demonstrate this good behavior – we'll cite some examples

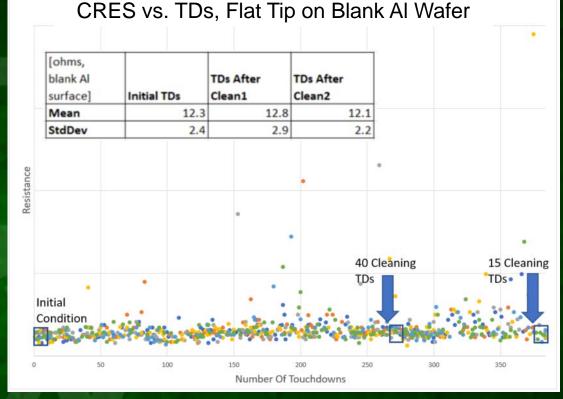

Lesher, Rhodes -FormFactor

Exhibit A – Contact Resistance

- Any probe technology needs stable contact resistance – for 5G devices or otherwise
- Stability is demonstrated as a function of overtravel and as a function of touchdowns

 As a function of overtravel, resistance values stabilize as soon as the probe reaches its buckling point (2 probes shown reach same stable value)

 As a function of touchdowns, resistance values are relatively constant without any cleaning over many probing cycles, and can be returned to baseline values with an ordinary cleaning recipe

*Absolute resistance values not representative, sub-optimal tip type for flat Al surface

SWTest | June 2-5,2019

- 5G devices will be packaged just like anything else, so their contacts must be in good condition
- Vertical MEMS probes with flat tips are able to combine the stable CRes just shown with an otherwise light touch on solder bumps or capped pillars
- The large surface area of the tip creates a coining on the top of the curved solder surface, and Solder is not displaced outside of the original diameter

SWTest | June 2-5,2019

Exhibit C – Thermal Stability

- There must be an option to test at extremes of temperature, since 5G devices will be used in environmentally challenging locations
 - Ex: outside on a pole under bright sunshine in Phoenix
- Data shown here collected on Uflex + UF3000 test cell for 3-6 GHz RF application

• Proximity soak (-200 um) yields 90% of movement within 30 minutes – short time to thermal stability

- 9 um maximum movement from 25C start to 125 C finish, on long axis of probe head
- Contact soak from t=0 appears allowable due to low magnitude of total movement
 - Ready to probe well before 30 minutes quick setup
- Demonstrated capability over 25→125C temperature range; higher temperatures remain reasonable

SWTest | June 2-5,2019

Exhibit D – Repairability

- Blinding flash of the obvious bad things sometimes happen when probing
- Vertical MEMS can be quite forgiving of these incidents
 - They can withstand an occasional excessive overtravel event and return to original position
 - They can be replaced one by one in the event of more serious damage
 - High current/thermal damage
 - Breakage for any reason
 - They can all be replaced in the event of wearout

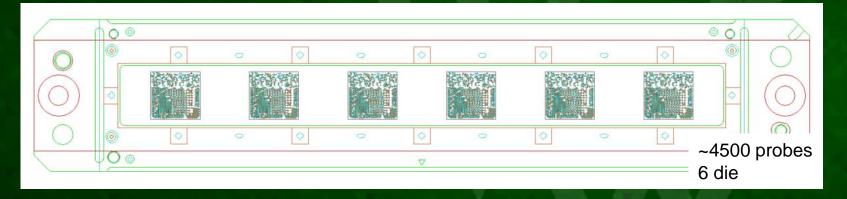
Exhibit E – Long Lifetime

Parameter	Z-only	10 um Octagon	
Interval	10	25	TDs
Touches	10	2	Per Cycle
ОТ	50	50	um
Wear rate	0.1	2.4	um/1000 cleaning TDs
EOL	150000	31250	Cleaning Cycles
	1500000	781250	Touchdowns

 Given expected 5G device volumes, quick wear out of probe cards won't be acceptable

 150 um of wear length with a well-selected material set addresses this

Wear rates can be fractions of a micron per 1000 cleaning TDs


 Data here shows conservative and aggressive recipes – there is room for optimization for specific applications

SWTest | June 2-5,2019

Exhibit F – Scalability

Some simple, mathematical-ish relationships:

- More contacts, smaller die area→finer pitch
- Higher volumes→higher parallelism

Vertical MEMS with frequency-capable guide plates can reach down to 106 um grid array pitch. And probe heads are able to support 8+ sites for complex, transceiver-type devices. Esher, Rhodes - SWTest | June 2-5, 2019

High Speed Characteristics

• 10 GHz demonstrated performance

• Why this isn't enough:

- You can test at super high speeds with Pyramid and analytical probes, but not at high enough parallelism
- You can reach higher parallelism with Pyrana, but not at 5G speeds
 - Builds on well established vertical MEMS and membrane technologies, but doesn't get there on its own
 - Inductance is partially balanced out with this approach, but not enough for higher speed signals

Bandwidth

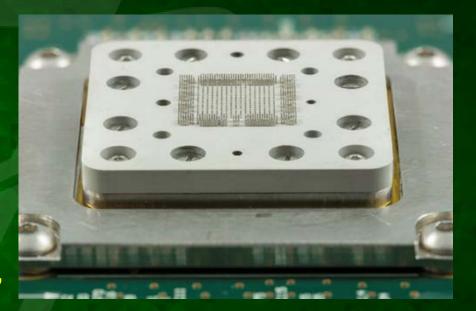
Lesher, Rhodes -FormFactor

Parallelism

Inductance, and How to Stop It

- In distributed model of a transmission line, generally R and G are ignored and Z₀=(L/C)^0.5.
- With perfect balance for each transition and transmission line, there is no reflected power and all of the power is transmitted – This never actually happens!
- Vertical probes represent a long path length dominated by high inductance. To compensate:
 - Shorten the path length
 - Offset with distributed capacitance
 - Strategic grounding

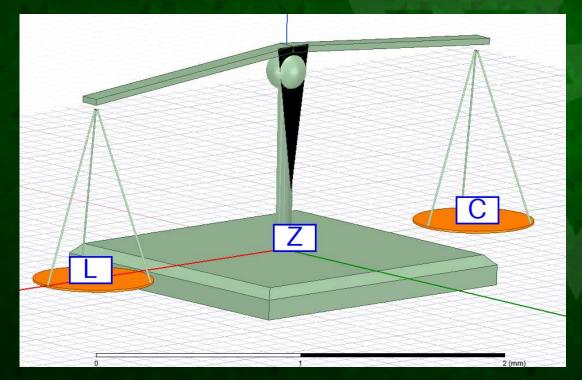
Lesher, Rhodes -

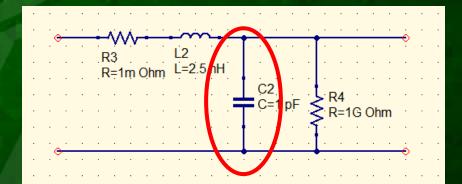

FormFactor

			•	•										•			•							
	0	•	•	F	^∕^ ₹3	Ŵ		•	Ľ2	2		•			•	•							•	
•	•	•	·	. F	≀ =1	m	Qh	m	L=	2.:	o ni	H	+	Ċ	2	•								
													T	C C	=1	pF	NV N	> F	(4 (=1	IG	Oh	m		
		•	•	•		•		•	•								÷.						÷	
		•			•									· .					•				ž	

Offsetting Inductance – Shorter Probes

- Inductance depends on length.
- The higher the frequency the shorter the wavelength. Lower than ~1/10th of a wavelength is distributed to lumped element transition.
- To get to higher frequency, make it smaller/shorter, but this has a COSt (stiffer, less useful springs, pitch limitations)
- Vertical MEMS probes can minimize compromises
 - Still compliant, still pitch capable, least inductive


SWTest | June 2-5,2019



Pogo Pins: often longer than 5 mm, much stiffer as they get shorter, unbalanced inductance

Offsetting Inductance – Parasitic Capacitance

- The length of <u>residual</u> inductance is what really matters.
- The inductance of a coax cable center conductor is not relevant because the capacitance to the shield compensates.

Offsetting Inductance

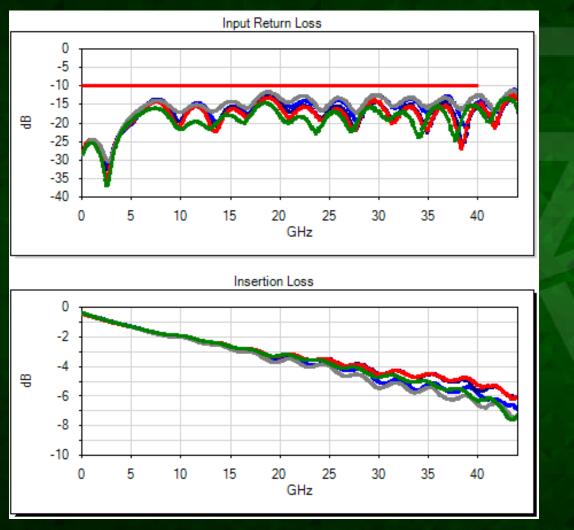
- Bringing ground close to the probe tip along with parasitic capacitance to ground dramatically reduces residual inductance
 - The physical length and mechanical attributes of the MEMS probes are decoupled from their electrical length and attributes, by an order of magnitude

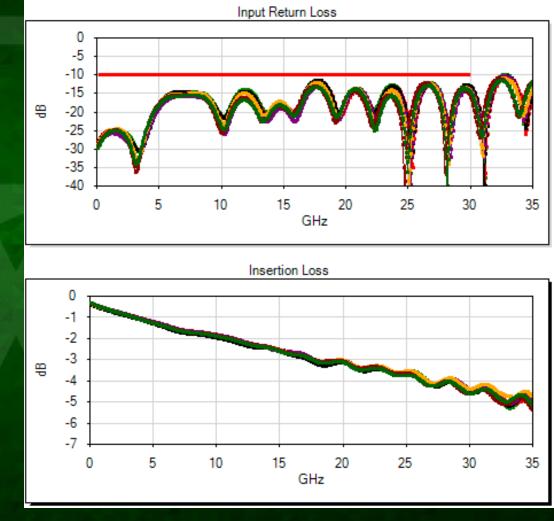
Lesher, Rhodes -FormFactor

Results

• Together, this is where it takes us:

- 75 mm length array
- >250 RF paths up to 45GHz
- >4500 contacts
- Still on good behavior as a probe technology!




SWTest | June 2-5,2019

S-Parameters – Probe Head and Start of PCB

Probe head – PCB interface Tier 1

Probe head – PCB interface Tier 2

SWTest | June 2-5,2019

One Additional Item

- With inductance often comes mutual inductance which can degrade isolation dramatically.
- Measured Isolation is better than 30dB for typical device layouts to 40GHz.
- For special cases, isolation can be increased even further

Wrap Up

- The advances to higher frequencies are now applicable IN CONJUNCTION with well-behaved probe technology
 - Solid mechanical foundation
 - Electrically resilient
 - And now supports 5G signals up to 45 GHz

Thank You!

• Contacts:

- Tim Lesher, RF Design Engineer tim.lesher@formfactor.com
- Patrick Rhodes, Product Engineer patrick.rhodes@formfactor.com