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Why Large Area? Why High Temperature? 
Trends for Copper Pillar Probing

Introduction

TR
EN

D

125°C automotive
now

150°C automotive
coming

90°C consumer

probing temperature

result of an alignment issue:
offset probing, deep impact

if you just heat up 
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• small Cu-pillar deformation @
elevated temperature
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Basics of 
Large Area High Temperature Copper Pillar Probing 

Introduction
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• Alignment: 
- good needle to needle alignment
- matching CTE of guide plates

• overtravel:
- coplanarity wafer to probe card
- system deflection under control

• low resistance contact mechanism
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Topics

• Introduction: Copper pillar, high temperature, high pin count

• Guide plate CTE improvement

• System (test cell) deflection @ high pin count

• Copper pillar contact @ 150°C probing temperature

• Summary

5



Boehm | Marić | Malitius

Introduction to CTE I/II

6

Guide plate CTE improvement

• Coefficient of Linear Thermal Expansion (α)
– Characterizes the materials change of size in 

response to a change in temperature (ΔT).
– (Eg.: Thermometer) 

– While heating, the average kinetic energy 
increases  the volume/length increases:

𝐿𝐿𝑇𝑇 = 𝐿𝐿0 � 𝑒𝑒𝛼𝛼�∆𝑇𝑇

(Taylor series) 𝐿𝐿𝑇𝑇 = 𝐿𝐿0 + ∆𝐿𝐿 ≈ 𝐿𝐿0 + 𝛼𝛼 � 𝐿𝐿0 � ∆𝑇𝑇

α =
1
𝐿𝐿0

∆𝐿𝐿
∆𝑇𝑇

Expansion joint on a road bridge
Thermometer

https://en.wikipedia.org/wiki/Thermal_expansion#/media/File:Dehnungsfuge.jpg
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Wafer

System
Guide 
Plate

• Coefficient of Thermal Expansion (α) 
of a Probe Card

– Many materials 
with different CTE
used!! 

Introduction to CTE II/II

7

Guide plate CTE improvement

x mismatch!
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Guide plate CTE vs. System CTE

• Guide Plate (Material) CTE
– Material characteristics

α = 1
𝐿𝐿0

∆𝐿𝐿
∆𝑇𝑇

– Measurement:  optical dilatometer

• System CTE
– Characterizes the situation in a real probing 

environment
• The probe head never reaches the prober´s chuck 

temperature
– Measurement: real probing environment

𝛼𝛼 =
ln 𝐿𝐿𝑇𝑇

𝐿𝐿0
∆𝑇𝑇

8

System temperature

Wafer

SystemGuide
Plate

Wafer probing
with a probe 
card

Guide plate CTE improvement

180°C
150°C
120°C
110°C
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CTE Verification Method I/II

• Measurement Method
– Real probe head (45x45 mm2 max image size), 14 diagonals measured
– UF3000 probing on a blanc wafer @:

-40°C
+28°C
+85°C
+150°C
+180°C

• Experiment Design:
2   systems (high/low pin count) 
5   probing temperatures
3   touchdowns per temperature
2   measurements per touchdown
14 distances per measurement

9

1

2 3

200mm blanc Al-wafer,
3 touchdowns

Probe head used for
measurements

Guide plate CTE improvement
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CTE Verification Method II/II

• The Measurement of the Scrubmarks:
– Coordinate measurement of the scrub position at 20°C
– Calculating the length for each probing temperature:

𝐿𝐿𝑇𝑇 = 𝐿𝐿0 � 𝑒𝑒𝛼𝛼�∆𝑇𝑇

– Calculating the CTE of the System:

𝛼𝛼 =
ln 𝐿𝐿𝑇𝑇

𝐿𝐿0
∆𝑇𝑇

– Calculating the mismatch:
𝐱𝐱 =

∆𝐿𝐿𝑇𝑇
2

10

Guide plate CTE improvement

α of the silicon wafer

Position mismatch
needle to Cu-pillar
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Measurement Setup

• “WERTH IP400” Coordinate 
Measurement System

accuracy:

11

Guide plate CTE improvement

𝐸𝐸2 = 1,15µ𝑚𝑚 + �𝐿𝐿 400𝑚𝑚 � 𝑚𝑚𝑚𝑚−1



Results
• Guide Plate CTE System CTE
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Guide plate CTE improvement
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𝛼𝛼𝑠𝑠𝑦𝑦𝑦𝑦𝑦 = 3,10 � 10−6 𝐾𝐾−1

3380 needles

Relative Material Expansion

𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 3 � 10−6 𝐾𝐾−1

𝛼𝛼ℎ𝑖𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶 = 4 � 10−6 𝐾𝐾−1

dL
/d

L 0

Temperature °C

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2 � 10−6 𝐾𝐾−1

𝛼𝛼𝑠𝑠𝑦𝑦𝑦𝑦2 = 2,62 � 10−6 𝐾𝐾−1

54 needles

The system* CTE depends on the needle count!
* System 1: 3.380 needles, System 2: 54 needles

other materials
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Mismatch vs. Temperature

• The mismatch (x) describes how the needle tip changes its position on the 
pad with a change in temperature.
– depends on the system CTE and the temperature

13

Guide plate CTE improvement
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Summary CTE

• We have developed an experimental method to measure the system CTE in 
the real environment.

• By understanding the physics of the system, we defined the material with 
the best matching CTE.

• With the new material we optimized the system and minimized the 
mismatch from 13,4 µm to 1,8 µm @180°C for a 100x100 mm2 image size.

14

Guide plate CTE improvement
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Topics

• Introduction: Copper pillar, high temperature, high pin count

• Guide plate CTE improvement

• System (test cell) deflection @ high pin count

• Copper pillar contact @ 150°C probing temperature

• Summary

15
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force vs overtravel for ViProbe® T-type

influence to the contact force
head plate

chuck

System Deflection Overview

16

head plate

vertical
contact force

System Deflection

deflection mechanism

reasons for system deflection: 
- headplate bending
- chuck deflection and tilt
- probe card bending
- tester interface bending
- temperature effects   

(… but that’s a story on it’s own)

prober base plate

X-drive

Z-drive

Y-drive

What is your system deflection?

POT = programmed
overtravel

AOT =actual
overtravel

POTAOT

common
operation

with system
deflection
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To determine the system deflection for a

- space transformer probe card with 7360 ViProbe T-type needles
(equivalent to 257N = 25,7kgf of contact force @ 100µm overtravel)

- on an Accretech UF3000 EX prober (300mm)

- with a J750 tester

side condition:
- ambient temperature (to be able to distinguish between force- and temperature effects)

Experiment Objective

17

System Deflection

probe card, wafer side„system“ = probe card + prober + tester
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• Probe Head Equipped with Needles of 
Different Height

Experiment Setup

18

site 31

site 0

needle height range: 
-20µm up to +110µm

footprint of the probe head
red: sites equipped with special needles

<<<<<<<<<<<<<<

multilayer ceramic

gold wafer

probe head

<<<<<<<<<<<<<<<<<<<<
PCB

needlesreference level

„+“

„-“

a gold wafer has been choosen
to avoid errors from the contact resistance

System Deflection
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• Needle Height Distribution
Experiment Setup

19

System Deflection

needle heights have
been manually
measured using a 
microscope

(measurement using a probe 
card analyzer failed due to
insufficient range at optical
measurement)

site 0           1             2             3            14           17           28           29           30       site 31
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• Experiment Parameter
– Six different touchdown positions

– Special test program: resistance test only

– current: 10µA

– Threshold for “contact”: 1000 Ω

– Manual overtravel control

– All sites, not only the selected sites, have 
been included into the measurement to have 
a bunch of contacts that represent the “zero” 
height

Experiment Setup

20

Ø300mm
gold wafer
0,2µm E-less Au 
on 5µm Ni

north

north overlap

center

south

south overlap

west

System Deflection
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• Center Position

Measurement Data

21

160µm

missing
overtravel

To get 100µm AOT
a POT of 160µm is 
required.

A data point in the diagram means:
- it‘s X-value is the relative prober Z-stage height when this

needle had first contact to the wafer
- it‘s Y-value is the previously measured relative needle

height

System Deflection

POT = programmed overtravel
AOT =actual overtravel
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• South Position

Measurement Data

22

180µm

missing
overtravel

To get 100µm AOT
a POT of 165-180µm is 
required. 
A tilt is clearly visible.

A data point in the diagram means:
- it‘s X-value is the relative prober Z-stage height when this

needle had first contact to the wafer
- it‘s Y-value is the previously measured relative needle

height

north

south
north

south

System Deflection

POT = programmed overtravel
AOT =actual overtravel
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• South Overlap
Position

Measurement Data

23

155µm

missing
overtravel

To get 100µm AOT
a POT of 155µm is required. 
50% of the force reduces the 
deflection only gradually.

A data point in the diagram means:
- it‘s X-value is the relative prober Z-stage height when this

needle had first contact to the wafer
- it‘s Y-value is the previously measured relative needle

height

System Deflection

POT = programmed overtravel
AOT =actual overtravel
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• System deflection has been measured for 
257N (25,7kgf) contact force

• System deflection (POT minus AOT) is 
60µm in the chuck center for 160µm POT

• At the wafer edge the system deflection 
can rise up to 85µm due to tilt of 
components

• System characterization is essential to get 
your high pin count probing process under 
control

System Deflection Summary

24

160µm

165-185µm

150µm

165-180µm

155µm

170µm

required POT to get
100µm AOT

System Deflection
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Topics

• Introduction: Copper pillar, high temperature, high pin count

• Guide plate CTE improvement

• System (test cell) deflection @ high pin count

• Copper pillar contact @ 150°C probing temperature

• Summary

25
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Cu Pillar Contact at 150°C Probing Temperature

26

FEASIBLE?

Cu Pillar Contact

• Pictures from 150°C Cu Pillar Probing Trials

position offset deep impact, 
fissure

large deformation



Boehm | Marić | Malitius

• Solder Cap
– Alloy: SnAg1.8 
– High temperature is critical due to

• Reduced hardness at high temperature
• Thicker oxide layer on solder cap

Material characteristic of the used Cu pillar

27

https://www.metallurgy.nist.gov/phase/solder/agsn.html

Cu Pillar Contact

Han, Jing, Nai, Xu: “Temperature dependence of creep and hardness of
Sn-Ag-Cu lead-free solder”; Journal of Electronic Materials 39(2):223-229 
February 2010
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• Requirements
– Stable contact resistance
– Small bump deformation 
– Similar bump height after probing

Challenges at 150°C test temperature

28

• Adjustable parameter
– Overtravel
– Contact force
– Contact surface

Cu Pillar Contact

Soft mechanical contact with good contact resistance!
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• Experiment Setup
– MµProbe® M-Type

• Contact force 3.8cN
• Cleaning material 3M pink (3µm) 

– MµProbe® N-Type
• Contact force 2.0cN
• Cleaning material 3M pink (3µm)

– Cu pillar with solder cap
• Solder material SnAg
• Bump height 85µm
• Bump diameter 100µm

– Accretech UF3000
• Voltage|Current 2V|20mA
• Prober acceleration 0.05g
• Prober velocity 18000µm/s

Style / Format Guidelines

29

daisy chain wafer
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Measurement Data

30

More overtravel shows almost no difference Correlation between Cres and overtravel
@ high temperature only

Cu Pillar Contact

• Influence of the Overtravel

150°C

28°C
150°C

28°C

=AOT

N-type head N-type head

limit
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Measurement Data

31

A higher contact force leads to more 
deformation, especially at high temperature

No correlation between bump deformation 
and Cres, the temperature matters

Cu Pillar Contact

• Influence of the Contact Force

150°C

28°C
150°C

28°C

75µm OT 75µm OT

limit
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Measurement Data

32

MµProbe® M-Type
- Contact force 3,8cN
- Overtravel 100µm

Cu Pillar Contact

• Influence of the Contact Surface

M-Type: standard M-Type: 
rough surface
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• MµProbe® M/N-Type: Solution for 150°C Bump and Cu Pillar Probing

Probe Card Data

33

N-Type M-Type

Full array pitch 80 µm 90 µm

Contact force 2,0 cN (gf) 3,8 cN (gf)

CCC @ 28°C 500 mA 717 mA

CCC @ 150°C 470 mA 667 mA

M-Type Lifetime Chart: „Shimming“ leads to extended lifetime

M-Type head, wafer side view US pat. no.: US 7795888 B2

Cu Pillar Contact
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• Influence of Parameter Changes 

Cu Pillar Contact Summary

34

More overtravel  Cres improvement @ 150°C

Rougher contact surface  better and more stable Cres

Higher contact force  increased bump deformation

A rough surface is the key to low contact resistance!

Cu Pillar Contact



Boehm | Marić | Malitius 35

Necessary Basics of 
Large Area High Temperature Copper Pillar Probing

Summary
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• High CTE ceramic enables high 
temperature large area probing

• Knowing your AOT is essential to 
deal with high force | high pin 
count probe cards

• Probing SnAg Cu pillar @ 150°C is 
feasible. Online cleaning needs 
special attention.
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Presentation Highlights
The Finish

CTE
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