

Large Area High Temperature Copper Pillar Probing

Gunther Boehm Daniel Malitius Antonela Marić

June 2-5,2019

Why Large Area? Why High Temperature? Trends for Copper Pillar Probing

probing temperature

area, total force

if you just heat up the prober...

result of an alignment issue: offset probing, deep impact

Boehm | Marić | Malitius

Basics of

Large Area High Temperature Copper Pillar Probing

• Alignment:

- good needle to needle alignment
- matching CTE of guide plates
- overtravel:
 - coplanarity wafer to probe card
 system deflection under control

small Cu-pillar deformation @ elevated temperature

low resistance contact mechanism

History of SWTW Presentations

SWTest | June 2-5,2019

System deflection

Copper pillar

- Introduction: Copper pillar, high temperature, high pin count
- Guide plate CTE improvement
- System (test cell) deflection @ high pin count
- Copper pillar contact @ 150°C probing temperature
- Summary

SWTest | June 2-5,2019

Guide plate CTE improvement

Coefficient of Linear Thermal Expansion (α)

- Characterizes the materials change of size in response to a change in temperature (ΔT).
 - (Eg.: Thermometer)
- While heating, the average kinetic energy increases \rightarrow the volume/length increases:

$$L_T = L_0 \cdot e^{\alpha \cdot \Delta T}$$

(Taylor series)

$$L_T = L_0 + \Delta L \approx L_0 + \alpha \cdot L_0 \cdot \Delta$$

 $\alpha = \frac{1}{L_0} \frac{\Delta L}{\Delta T}$

SWTest | June 2-5,2019

Expansion joint on a road bridge

Guide plate CTE improvement

Coefficient of Thermal Expansion (α) of a Probe Card

SWTest | June 2-5,2019

Guide plate CTE improvement Guide plate CTE vs. System CTE

• Guide Plate (Material) CTE

Material characteristics

 $\alpha = \frac{1}{L_0} \frac{\Delta L}{\Delta T}$

Measurement: optical dilatometer

System CTE

- Characterizes the situation in a real probing environment
 - The probe head never reaches the prober's chuck temperature
- Measurement: real probing environment

Boehm | Marić | Malitius

Guide plate CTE improvement CTE Verification Method I/II

Measurement Method

- Real probe head (45x45 mm² max image size), 14 diagonals measured
- UF3000 probing on a blanc wafer @:
 - -40°C +28°C +85°C +150°C +180°C

• Experiment Design:

- 2 systems (high/low pin count)
- 5 probing temperatures
- 3 touchdowns per temperature
- 2 measurements per touchdown14 distances per measurement

200mm blanc Al-wafer, 3 touchdowns

3

Probe head used for measurements

0

(0)

0

0

 \bigcirc

Boehm | Marić | Malitius

Guide plate CTE improvement CTE Verification Method II/II

The Measurement of the Scrubmarks:

- Coordinate measurement of the scrub position at 20°C
- Calculating the length for each probing temperature:

 α of the silicon wafer

– Calculating the CTE of the System:

$$\alpha = \frac{\ln\left(\frac{1}{L_0}\right)}{\Delta T}$$

 (L_{T})

 $L_T = L_0 \cdot e^{\alpha \cdot \Delta T}$

– Calculating the mismatch:

Position mismatch needle to Cu-pillar

SWTest | June 2-5,2019

Boehm | Marić | Malitius

10

Guide plate CTE improvement Measurement Setup

• "WERTH IP400" Coordinate Measurement System

accuracy: $E_2 = 1,15 \mu m + \frac{L}{400} m \cdot mm^{-1}$

Boehm | Marić | Malitius

Guide plate CTE improvement

Results

• Guide Plate CTE

System CTE ≠ System II CTE

The system* CTE depends on the needle count!

* System 1: 3.380 needles, System 2: 54 needles

Guide plate CTE improvement **Mismatch vs. Temperature**

The mismatch (x) describes how the needle tip changes its position on the pad with a change in temperature.

depends on the system CTE and the temperature

Guide plate CTE improvement Summary CTE

- We have developed an experimental method to measure the system CTE in the real environment.
- By understanding the physics of the system, we defined the material with $\overline{}$ the best matching CTE.
- With the new material we optimized the system and minimized the \mathbf{O} mismatch from 13,4 μ m to 1,8 μ m @180°C for a 100x100 mm² image size.

- Introduction: Copper pillar, high temperature, high pin count
- Guide plate CTE improvement
- System (test cell) deflection @ high pin count
- Copper pillar contact @ 150°C probing temperature
- Summary

System Deflection **System Deflection Overview**

deflection mechanism

influence to the contact force

force vs overtravel for ViProbe® T-type

reasons for system deflection:

- headplate bending
- chuck deflection and tilt
- probe card bending
- tester interface bending
- temperature effects
- (... but that's a story on it's own)

Boehm | Marić | Malitius

What is your system deflection?

SWTest | June 2-5,2019

overtravel

overtravel

System Deflection Experiment Objective

To determine the system deflection for a

- space transformer probe card with 7360 ViProbe T-type needles (equivalent to 257N = 25,7kgf of contact force @ 100μm overtravel)
- on an Accretech UF3000 EX prober (300mm)
- with a J750 tester

"system" = probe card + prober + tester

side condition:

- ambient temperature (to be able to distinguish between force- and temperature effects)

SWTest | June 2-5,2019

a gold wafer has been choosen to avoid errors from the contact resistance

SWTest | June 2-5,2019

Boehm | Marić | Malitius

needle height range:

-20µm up to +110µm

System Deflection Experiment Setup

• Needle Height Distribution

needle heights have been manually measured using a microscope

(measurement using a probe card analyzer failed due to insufficient range at optical measurement)

System Deflection Experiment Setup

Experiment Parameter

- Six different touchdown positions
- Special test program: resistance test only
- current: 10µA
- Threshold for "contact": 1000 Ω
- Manual overtravel control
- All sites, not only the selected sites, have been included into the measurement to have a bunch of contacts that represent the "zero" height

Boehm | Marić | Malitius

SWTest | June 2-5,2019

south overlap

System Deflection Measurement Data

Center Position

To get 100µm AOT a POT of **160µm** is required.

POT = $\underline{\mathbf{p}}$ rogrammed $\underline{\mathbf{o}}$ ver $\underline{\mathbf{t}}$ ravel AOT = $\underline{\mathbf{a}}$ ctual $\underline{\mathbf{o}}$ ver $\underline{\mathbf{t}}$ ravel

A data point in the diagram means:

- it's X-value is the relative prober Z-stage height when this needle had first contact to the wafer
- it's Y-value is the previously measured relative needle height

SWTest | June 2-5,2019

System Deflection Measurement Data

South Position

To get 100μm AOT a POT of **165-180μm** is required. A **tilt** is clearly visible.

POT = $\underline{\mathbf{p}}$ rogrammed $\underline{\mathbf{o}}$ ver $\underline{\mathbf{t}}$ ravel AOT = $\underline{\mathbf{a}}$ ctual $\underline{\mathbf{o}}$ ver $\underline{\mathbf{t}}$ ravel

A data point in the diagram means:

- it's X-value is the relative prober Z-stage height when this needle had first contact to the wafer
- it's Y-value is the previously measured relative needle height

Boehm | Marić | Malitius

System Deflection Measurement Data

 South Overlap Position

> To get 100μm AOT a POT of **155μm** is required. 50% of the force reduces the deflection only gradually.

POT = $\underline{\mathbf{p}}$ rogrammed $\underline{\mathbf{o}}$ ver $\underline{\mathbf{t}}$ ravel AOT = $\underline{\mathbf{a}}$ ctual $\underline{\mathbf{o}}$ ver $\underline{\mathbf{t}}$ ravel

A data point in the diagram means:

- it's X-value is the relative prober Z-stage height when this needle had first contact to the wafer
- it's Y-value is the previously measured relative needle height

SWTest | June 2-5,2019

System Deflection System Deflection

- System deflection has been measured for 257N (25,7kgf) contact force
- System deflection (POT minus AOT) is 60µm in the chuck center for 160µm POT
- At the wafer edge the system deflection can rise up to 85µm due to tilt of components
- System characterization is essential to get your high pin count probing process under control

- Introduction: Copper pillar, high temperature, high pin count
- Guide plate CTE improvement
- System (test cell) deflection @ high pin count
- Copper pillar contact @ 150°C probing temperature
- Summary

SWTest | June 2-5,2019

Cu Pillar Contact Cu Pillar Contact Cu Pillar Contact at 150°C Probing Temperature

• Pictures from 150°C Cu Pillar Probing Trials

position offset

deep impact, fissure

large deformation

Boehm | Marić | Malitius

SWTest | June 2-5,2019

FEASIBLE?

Ô

Cu Pillar Contact Material characteristic of the used Cu pillar

Sn-Ag-Cu lead-free solder"; Journal of Electronic Materials 39(2):223-229 February 2010 SWTest | June 2-5,2019

Cu Pillar Contact Challenges at 150°C test temperature

• Requirements

- Stable contact resistance
- Small bump deformation
- Similar bump height after probing

Adjustable parameter

- Overtravel
- Contact force
- Contact surface

Soft mechanical contact with good contact resistance!

Boehm | Marić | Malitius

Style / Format Guidelines

Experiment Setup

- MµProbe[®] M-Type
 - Contact force
 - Cleaning material 3M pink (3μm)
- MµProbe[®] N-Type
 - Contact force
 - Cleaning material

3.8cN

SnAg

85µm

0.05g

- Cu pillar with solder cap
 - Solder material
 - Bump height
 - Bump diameter 100μm
- Accretech UF3000
 - Voltage|Current 2V|20mA
 - Prober acceleration
 - Prober velocity 18000µm/s

Boehm | Marić | Malitius

Cu Pillar Contact Measurement Data

• Influence of the Overtravel

More overtravel shows almost no difference

Correlation between Cres and overtravel @ high temperature only

SWTest | June 2-5,2019

Cu Pillar Contact Measurement Data

• Influence of the Contact Force

A higher contact force leads to more deformation, especially at high temperature

No correlation between bump deformation and Cres, the temperature matters

SWTest | June 2-5,2019

Cu Pillar Contact Measurement Data

• Influence of the Contact Surface

MµProbe[®] M-Type

- Contact force 3,8cN
- Overtravel 100µm

M-Type: standard

M-Type: rough surface

Boehm | Marić | Malitius

Cu Pillar Contact Probe Card Data

• MµProbe[®] M/N-Type: Solution for 150°C Bump and Cu Pillar Probing

	N-Type	М-Туре
Full array pitch	80 µm	90 µm
Contact force	2,0 cN (gf)	3,8 cN (gf)
CCC @ 28°C	500 mA	717 mA
CCC @ 150°C	470 mA	667 mA

M-Type head, wafer side view

Boehm | Marić | Malitius

M-Type - Lifetime estimation due to cleaning Cleaning recipe: 1x3M - 50µm octagonal - 30µm OD 600 Very aggressive (every 100TDs) Aggressive (every 200TDs) extension testers 300 500 Pulling a shim -Soft (every 500TDs) 3 Mio TDs 6 Mio TDs 16 Mio TDs ₫ 100 0 5 Mio 0 Mio 10 Mio 15 Mio 20 Mio # Touchdowns

M-Type Lifetime Chart: "Shimming" leads to extended lifetime

➔ US pat. no.: US 7795888 B2

Cu Pillar Contact Cu Pillar Contact Summary

• Influence of Parameter Changes

Higher contact force

 \rightarrow increased bump deformation

More overtravel

 \rightarrow Cres improvement @ 150°C

Rougher contact surface

 \rightarrow better and more stable Cres

\rightarrow A rough surface is the key to low contact resistance!

Boehm | Marić | Malitius

Summary Necessary Basics of Large Area High Temperature Copper Pillar Probing

- High CTE ceramic enables high temperature large area probing
- Knowing your AOT is essential to deal with high force | high pin count probe cards
- Probing SnAg Cu pillar @ 150°C is feasible. Online cleaning needs special attention.

The Finish Presentation Highlights

SWTest | June 2-5,2019

The Finish Acknowledgements

Birgit Walloch FEINMETALL GmbH

Jürgen Bauersfeld FEINMETALL GmbH

Matthias Schnaithmann FEINMETALL GmbH

Panagiotis Vlachakis FEINMETALL GmbH SEM pictures, head assembly

Prober operation

Experiment design

Special head assembly

Boehm | Marić | Malitius

Thank you!

Gunther Boehm Manager R&D FEINMETALL GmbH +49 (7032) 2001 - 149 E: gunther.boehm@feinmetall.de

Antonela Marić R&D Engineer FEINMETALL GmbH +49 (7032) 2001 - 353 E: antonela.maric@feinmetall.de

Daniel Malitius R&D Technician FEINMETALL GmbH +49 (7032) 2001 - 474 E: daniel.malitius@feinmetall.de

Boehm | Marić | Malitius