A Technique of Embedding Protection Resistors inside LTCC Substrate using Space TransFormer

*KWANG-JAE Oh, YONG-HO CHO
Microfriend
SANG-KYU YOO
Samsung Electronics

June 2-5, 2019
Overview

• Trends of Probe Card
• High Parallelism for Probe Card
• Introduction of Protection Resistor
• Research and Evaluation of Protection Resistor
• Measurement and Analysis for Protection Resistor
• Summary
• Future Works
Trends of Probe Card

- **Global Semiconductor Market**
 - IC market flat in 2015–2016
 - Upturn 24% YoY to 343.2B$ in 2017
 - Economic recovery & expansion in automotive market
 - Weakening growth until 2019

- Memory market Stagnation in 2015-2016
 - Market Changed 61.5% YoY to 124.0B$ in 2017
 - Smartphone, server/data center equipment and SSDs
Trends of Probe Card

- **Global Probe Card Market**

 - **Increased P/card Revenues**
 - In 2017
 - IC & Memory Sales
 - **Steady increase trend of CAGR 5% since 2017**
 - **Need to Check Growth after 2019**

Source: VLSI 2018
Trends of Probe Card

DRAM Die Size & Density Trend

- Fab node ▼
- Memory Density ▲
- Die Size (@ Same Capacity) ▼
- Chip Count per wafer ▲
- Parallelism of P/Card ▲
High Parallelism for Probe Card

• DRAM Probe Card Features

– Over 1,000 DUTs
– Over 100,000 Probes
– Over x10 Shared
– Fine Pitch Pad Probing
 (under 60um)
High Parallelism for Probe Card

• Customer Requirement
 – Electrical Performance
 • Signal Integrity
 – Impedance Control
 – Time of Propagation Delay Matching
 – Differential Pair Trace Matching
 – Multi Shared Channels Routing
 • Power Integrity
 – Low Power Impedance Control
 – DC Trace Resistance
 – Current Carrying Capacity
 – Leakage Current Control
 – Mechanical Performance
 • Probe Contact
 – Force Uniformity
 – Position Accuracy
 – Planarity
 – Scrub Mark in Hot/Cold Temp.
 – Wearing Robustness
 – Depress / Broken
 – Tip Shape Uniformity
 • Stiffener Structure
 – Thermal Deformation
 – Strong Stiffness
High Parallelism for Probe Card

- **Multi Shared Channel Test**
 - Pros and Cons

- **Productivity Increase**
 - Expansion Limited ATE Resource
 - Short Test Time

- **Yield Decrease**
 - Reduction Test Cost
 - Impedance Mismatching
 - Simultaneous Fail by Short Defect

- **Test Time Reduction**
- **Test Cost Reduction**
- **Yield Decrease**
- **Impedance Mismatching**
- **Crosstalk Increasing**
- **Short Defect**
Introduction of Protection Resistor

• **Role of Protection Resistor**

 – Short Defect Isolation by Protection Resistors at shared Channel

Source: G. Kim and W. Nah, “NAC Measurement Technique on High Parallelism Probe Card with Protection Resistors”, Journal of Semiconductor Technology and Science, VOL.16, NO.5,
Introduction of Protection Resistor

- **Recommended Channel to Use Protection Resistor**
 - **Recommended Channel**
 - Only Input Shared Channel
 - **Restriction Channel**
 - Output Channel include I/O

x12 Shared Channel with Protection Resistors

<table>
<thead>
<tr>
<th>ATE</th>
<th>Probe Card</th>
<th>Wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Ch.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Shared Output Channel

<table>
<thead>
<tr>
<th>Wafer</th>
<th>Probe Card</th>
<th>ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protection Resistor

- V_{ON}
- V_{PR}
- R_{ON}
- R_{PR}

ATE Test Ch.

V_{ATE}

KJ-Oh/YH-Cho/ SK-Yoo

SWTest | June 2-5, 2019
Research and Evaluation of Protection Resistor

- **Types of Appropriate Protection Resistor**
 - Surface Mount Resistor on Substrate
 - Need to Packaging Area, Time and Cost
 - Highly Resistance Accuracy and Various Value
 - Embedded Resistor in Substrate
 - No Packaging Area on the Substrate with over 100K pins
 - Inaccurate Resistance and Low Resistance
 - Types
 - Lumped Resistor
 - Thin Film Array Resistor Module
 - Thick Film Resistor on Inner Ceramic
Embedded Thick Film Resistor

Feature
- Similar Processing like a Lumped Resistor
- Using LTCC (Low Temperature Co-fired Ceramic) Process for Making Embedded Resistor

Advantage
- Free Space on the Substrate Surface
- No Degradation during Post-Processing
 - Machining, Thin Film Process, MEMS, etc.
- Reduce Cost
 - Post-Processing Fail Cost, Soldering, etc.

Disadvantage
- Rough Resistance Tolerance between Resistors
- Un-tunable Resistance
Research and Evaluation of Protection Resistor

- **LTCC Introduction**
 - Low Temperature Co-fired Ceramic
 - Material: Alumina + Glass
 - Firing Temperature: 850 °C
 - Conductor Metal: Ag, Au, Cu
 - Feature
 - High Conductivity Metal Electrode
 - Low Dielectric Loss
 - Embedded Passive Devices

- **LTCC Application**
 - RF
 - Automotive
 - Semiconductor
 - Military
 - FEM
 - DMB-M
 - WLAN
 - 60GHz WPAN
 - Radar
 - EPS
 - MAP Sensor
 - Probe Card
 - ESC
 - Heater
 - Transceiver
 - Radar TRM

Fig. Space Transformer for Probe Card

Source: SEMCNS
Research and Evaluation of Protection Resistor

Variable Experiment to Overcome Resistance Tolerance

- **Design Parameter**
 ① Width & Length
 ② Width & Length Aspect Ratio
 ③ Termination Pad Size

- **Process Parameter**
 ① Paste Printing Thickness
 ② Printing Direction
 ③ Lamination Structure
Research and Evaluation of Protection Resistor

Prototype Test Experiment

• Test Vehicle for Fixing the Parameter and Setup the Library

Green Sheet base on LTCC

Resistor Paste
Termination Pad
Ground Pad

KJ-Oh/YH-Cho/SK-Yoo
Measurement and Analysis for Protection Resistor

- **Dimension Gap Compared to Design after Printing Process**
 - Process Gap is Similar from above Small Size

![Graph showing dimension gap comparison](image)

KJ-Oh/YH-Cho/SK-Yoo

SWTest | June 2-5, 2019
Measurement and Analysis for Protection Resistor

• **Thickness Profile Measurement**
 – Overall Thickness: Constant
 – Side Slope: Depends on Paste Length
 • Vertical Direction
 ➔ Need to Process Control
 • Horizontal Direction
 ➔ Overlap Control of Termination Pad and Resistor Pattern

• **Process Variable Optimization**
 – Control factor
 • Thickness + Flatness
 • Side Slope
Measurement and Analysis for Protection Resistor

• **Result of Resistance Measurement**

 – Predictable Resistor Value by Aspect Ratio

 – Under ± 20% Resistance tolerance

 • Under ± 15% on Low Aspect Ratio

 – Low Tolerance Level between Lots on Low Aspect Ratio
Measurement and Analysis for Protection Resistor

- **Measurement Setup of Resistor**
 - Network Analyzer: Agilent E5071C
 - Probe Station: DSF System BTE300
 - Probe Tip: Picoprobe ECP18-SG-600
 - Test Sample: 8 Inch LTCC Test Substrate
Measurement and Analysis for Protection Resistor

• Result of S-parameter Measurement
 – Result of 3 Embedded Resistors
 • Resistance: 208Ω, 255Ω, 293Ω
 – Measurement $R = $ Embedded $R + 50Ω$ (50 Ω Termination)
 – The Larger the Resistance, the Greater the Insertion Loss
 • Capacitive Reactance
 – Ground Plane for Measurement Under the Resistor Pattern

Fig. Result of Resistor Measurement

Fig. Embedded Resistor Structure
Measurement and Analysis for Protection Resistor

- **X12 Shared Channel Circuit Simulation**
 - Compared with the Lumped Resistor and the Embedded Resistor
 - X12 Circuit Eye Pattern (200Mbps) Simulation
 - Lumped Resistor: Vishay’s Resistor S-parameter Database
 - Embedded Resistor: Measured S-parameter Data

Fig. Block Diagram of x12 Shared Channel

- Degradation Eye Diagram Measurement By Capacitive Reactance of Embedded Resistor
Measurement and Analysis for Protection Resistor

• Lumped Device Modeling of Embedded Resistor

(Induced by the Via for Measurement)

Inductance

Capacitance

(Induced by the Ground Plane)

Fig. Lumped Model of the Embedded Resistor

Fig. In/output Reflection Data on the Smith Chart between Measurement and modeling

– Reduction Parasitic Elements
 • Removing the Ground Plane under Embedded Resistor ➞ Decreasing the Capacitance
 • De-embedding the Measurement Data ➞ Removing the Inductance
Comparative x12 Eye Simulation with Improved Embedded Resistor

- Virtual Simulation with Improved E.R. which is reduced Parasitic Reactance to 1/3

<table>
<thead>
<tr>
<th></th>
<th>Eye Level Zero</th>
<th>Eye Level One</th>
<th>Eye Amplitude</th>
<th>Eye Height</th>
<th>Eye Width</th>
<th>Eye Opening Factor</th>
<th>Average Eye Rise Time</th>
<th>Average Eye Fall Time</th>
<th>Eye Jitter (pp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial E.R.</td>
<td>0.161</td>
<td>0.859</td>
<td>0.698</td>
<td>0.369</td>
<td>4.053.E-09</td>
<td>0.674</td>
<td>3.804.E-09</td>
<td>3.306.E-09</td>
<td>1.002.E-09</td>
</tr>
<tr>
<td>Improved E.R.</td>
<td>0.137</td>
<td>0.885</td>
<td>0.747</td>
<td>0.458</td>
<td>4.459.E-09</td>
<td>0.728</td>
<td>2.714.E-09</td>
<td>2.832.E-09</td>
<td>5.915.E-10</td>
</tr>
<tr>
<td>Discrete R</td>
<td>0.125</td>
<td>0.894</td>
<td>0.770</td>
<td>0.490</td>
<td>4.550.E-09</td>
<td>0.746</td>
<td>2.623.E-09</td>
<td>2.732.E-09</td>
<td>5.259.E-10</td>
</tr>
</tbody>
</table>

Verifying the improvement of Eye Performance close to Discrete R
Measurement and Analysis for Protection Resistor

- Test Simulation about 20% Resistance Tolerance

- No Significant Performance Change even at 20% Resistance Tolerance
Summary

• **Embedded Protection Resistor**
 – There is a disadvantage that the resistor value can not be tuned when the resistors are embedded in STF
 – Parameter optimization can manage the resistance and tolerance.
 – Protection resistor can be embedded with the target resistance value by adjusting the appropriate width and aspect ratio

• **Probe Card with Embedded Protection Resistor**
 – Signal degradation due to parasitic capacitance from ground structure
 – Available of similar performance like discrete Resistor when improving the embedded resistor structure
 – Even if the protection resistor value of the shared channel in the probe card has tolerance ±20%, it does not affect the transmission performance of the probe card
Future Work

• Simulation Test after Modifying the Resistor Design for Reducing Capacitive Reactance
• Optimization Test of Design Parameter for Stable Resistance
• Additional Resistance Library Setup Experiment
• Applying a Embedded Protection Resistor Test inside 12inch STF
• Increase Yield by Engineering and Manufacturing Valuation Test
Acknowledgements

- Sang-Kyu Yoo
- Gyu-Yeol Kim
- Yong-Ho Cho
- Jong-Myeon Lee
- Gun-Chun Lee
- Dae-Hyeong Lee
Thanks for Your Attention!