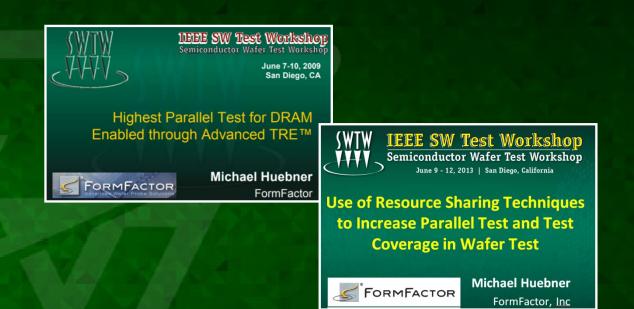


Improving Signal Fidelity in High Parallelism Probe Card via TTRE


Lee, Young-woo SK hynix Nhin, Quay FormFactor

June 2-5,2019

Introduction

Focus of this discussion

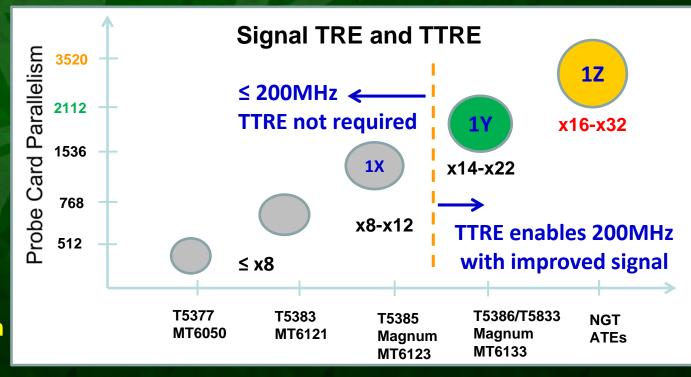
- What this paper is "not"
 - SI/PI probe card design
 - FFI TRE
 - FFI ATRE and ATRE control method

What this paper will discuss -

 Using FFI Terminated TRE (TTRE) to achieve improved signal fidelity and enable higher signal sharing while maintaining or increasing test speed

TTRE is FFI patent protected

Outline


Introduction of Terminated TRE (TTRE)

- Signal line termination
- DUT parallelism trend
- TTRE overcoming challenges of tester resource sharing
 - Signal degradation with higher TRE-share
 - Limitation on the number of signals shared
- Case study review
- Summary / Conclusion
- Follow-on work

Introduction

Increasing probe card parallelism with Advanced TRE

- Probe card DUT parallelism is trending higher enabled by higher signal sharing
- ATRE Advanced tester resource enhancement/extension
 - DC and Power (PPS-TRE) with active components
- TRE / TTRE DC signal share
 - TRE: signal and driver sharing without active components
 - Terminated TRE (TTRE): driver sharing with active components
- TTRE recommended for TRE share of x14 or higher to improve signal performance and to increase test speed to 200MHz
- Address 1X, 1Y, 1Z process node transition

SWTest | June 2-5,2019

TTRE is FFI patent protected

Introduction

What are TRE, ATRE, and TTRE?

Introduction

• Test Resource Enhancement = TRE

Sharing of tester resources between multiple DUTs using passive components.

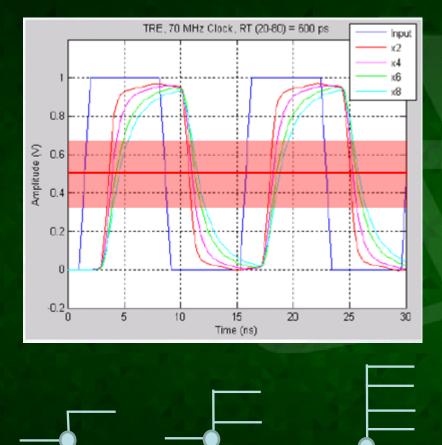
• Advanced TRE

- Sharing of test resources using active components and having the ability to connect and disconnect DUTs from the tester resources
- Other active circuits to increase tester capabilities
 - Current, Frequency ...

Michael Huebner

June 9 - 12, 2013 IEEE Workshop

And the new TTRE = Terminated-TRE

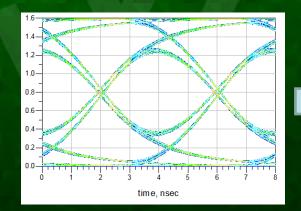

TTRE technology improves

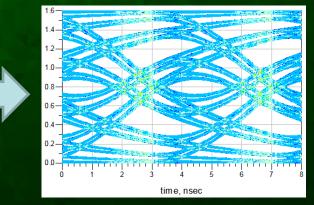
signal condition which allows

- (1) Increased/doubled test speed without compromising signal integrity
- (2) Increased signal sharing without compromising test speed

TTRE is FFI patent protected

Signal Fidelity Impacted by Higher Sharing


x4


x8

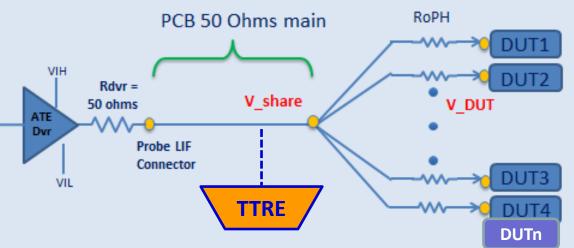
• Key signal integrity considerations

- Slow down rise time
- Reduce signal amplitude
- Increases signal skew

• Potential contribution to data-eye shrinkage

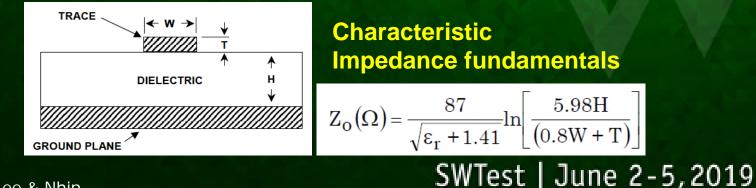
Example of signal impacted by sharing factor

SWTest | June 2-5,2019


x2

Signal Fidelity Improves with Termination

5.98H


Typical Issues with Signal Sharing/Splitting

- **Voltage reflection at PCB to Share points**
- These cause driver signal arbitrations that limit performance
 - Amplitude, rise time, etc.
- TTRE absorbed the reflections, enhanced the signal
 - Minimized signal reflections from V-share back to driver
 - Absorb reflection from VDUT back to V-share and source
 - Significant improvement in waveform at the DUT _
 - Increase amplitude, restore rise time

Implementing FFI TTRE – Terminated TRE Advanced circuitry with active component and termination power supply FFI design and fabricated TTRE module with density to support 1TD ~3000 DUT parallelism

TTRE is FFI patent protected

Key Benefits of TTRE Implementation

- Enables higher parallelism (>1536DUT) while maintaining test speed at ≤125MHz
 - Without TTRE higher signal sharing reduces signal fidelity
 - Slower rise time, reduction of amplitude
- Maintaining parallelism (1536DUT or 2112DUT) while increasing test speed from 100MHz to 200MHz
 - Better signal fidelity at higher test frequency
- Improve throughput and test efficiency
 - Test coverage increases with test frequency increases
- Extend life time and ROI on existing tester fleet
- Package device to wafer sort test result correlation at elevated 200MHz

TTRE Implementation Considerations

There are different ways to implement TTRE depending on tester capability

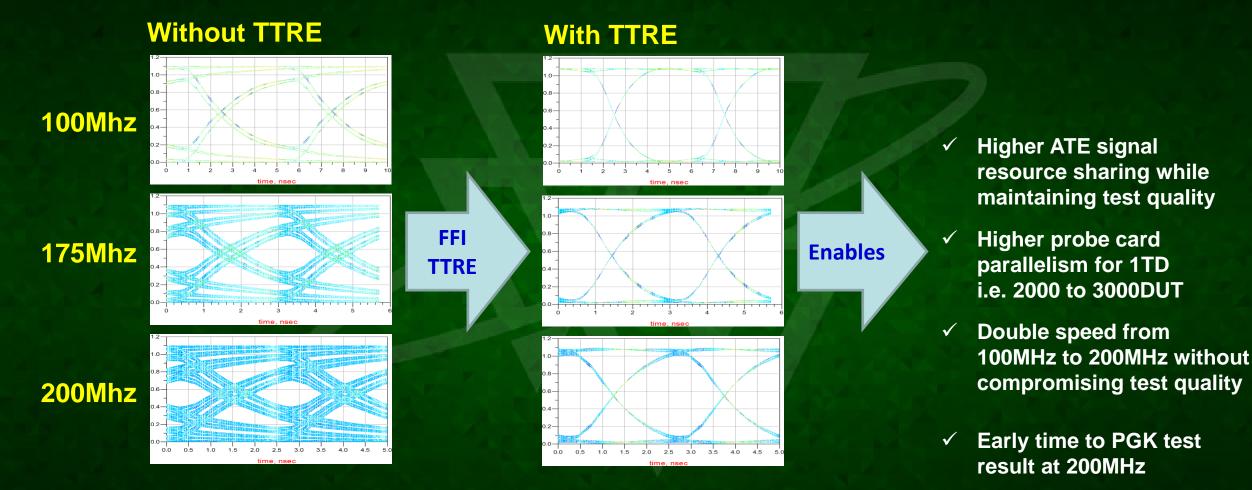
- Termination values (RT and VTT) selected according to signal performance, power dissipation, and tester driver capability
 - (i.e. 280hm, 450hm, or 570hm based on # of share)
- Internal switch available to isolate TTRE during DC and low speed testing
- TTRE power supply provided on probe card
 - Programmable from ATE voltage resource (e.g. un used driver, DC channel or PPS)

Typical Tester Channel with TTRE Implementation

- Address / command clocks and differential inputs
 - CS_A
 - DQ_A
 - CK_T_A
 - CK_C_A
 - DQS_T_A
 - DQS_C_A
 - CA & WCK (for DDR5/LPDDR5)

- Typical test items improve with higher test frequency
 - Easy functional
 - Complex functional

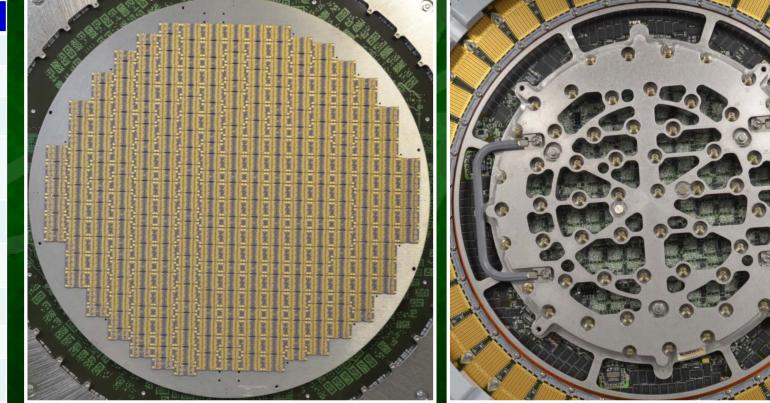
Case Study: >10-TRE Share Analysis


Simulation conditions

- Frequency = 100MHz, 175MHz and 200MHz
- Vin = 1.1V, VTT = Vin/2
- Magnum5 Tester
- 1.0pF Load

Data eye evaluation point

>10-TRE Share, 1.1V, 100MHz, 175MHz, 200MHz



TTRE greatly improves signal amplitude and overall data-eye opening
 SWTest | June 2-5,2019

Case Study Review

• X16-TRE Design with TTRE for LPDDR4

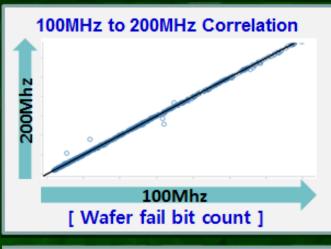
Parameter	ML9431A		
Device	LPDDR4		
Tester	MGV 24 Site		
# of TTRE Module	~200		
Max Parallelism Supported	1536 2048 (16SA)		
Probe count	>100K		
Touchdown	1TD		
Total net count	~25K		
Total switch count			
DC & PPS TRE IC	~200 XDC Boost		

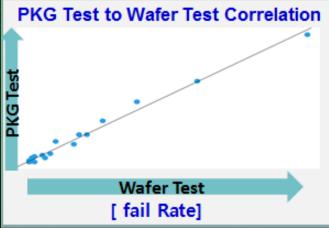
Actual Wafer Test Measurement

- Overall efficiency achieved depends on the number of frequency related test items implemented and test strategy
- Proven test frequency doubled from 100Mhz to 200Mhz in production environment for DDR4/LPDDR4 type memory (1X and 1Y node)
 - Correlated between wafer test and final package test result
 - No deviation from fail bit count

ATE Test Program Considerations

• Test Program considerations for TTRE Implementation

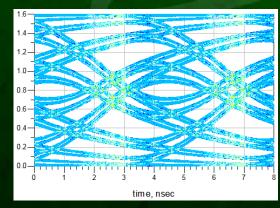

- PPS channel assignment of dummy DUT to set up the reference level.
- Tester spec consideration for TTRE power consumption.
- Control bit assignment for TTRE On/Off.
- VIH/VIL level adjustment by each test items.
 - --> Consider levels based on VIH / VIL variables


24 <u>-</u> 1	VTT = 0.75V setting @ 1.5V Operation			
ATE VIH	1.5V	2.0V	2.8V	3.5V
DUT VIH	1.03V	1.22V	1.52V	1.78V
ATE VIL	0V	-0.5V	-1.25V	-1.25V
DUT VIL	0.47V	0.28V	0.00V	0.0V

Device Specific Test Correlation

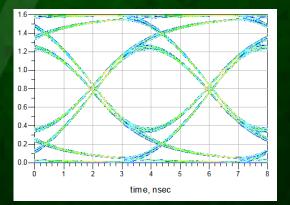
Device specifics test results

- Performance improvement in term of test speed
 - ① Successfully achieved test speed increased from 100Mhz to 200Mhz
 - **②** Function test time reduction
- Strong 100Mhz Vs. 200Mhz wafer test correlation results
 ① No deviation from wafer fail bit count
- Strong Wafer test Vs. PKG test correlation results
 ① No deviation from fail rate & yield



Summary / Conclusion

- Terminated TRE (TTRE) significantly improves signal fidelity, enables higher tester resource sharing as DRAM node transitions to 1X, 1Y, and 1Z on existing testers
 - Higher test frequency with wider and larger data-eye
 - Higher probe card DUT parallelism
- By doubling test frequency from 100MHz to 200MHz, TTRE improves test throughput and efficiency
 - Faster clock, more efficient functional tests
- Enable correlation and early time to data for packaged test result at 200MHz
 - No deviation from wafer test & package test result at elevated test speed of 200MHz


Follow-on Work

- Implementing and validating TTRE at TRE-share >x30 to enable 1TD testing of ~2500 and ~3000DPW using existing ATE
 - Enabling testing of DRAM 1Z process node transition
 - 1TD, 200K probes per probe card, ~3000DUT parallelism
- Data-eye opening performance improvement with FFI TTRE technology
 - No TTRE
 >x30-TRE Share
 125Mhz

FFI TTRE

With FFI TTRE
>x30-TRE Share
125Mhz

Thank You - Questions

Acknowledgement

- YW Lee (SK hynix)
- YS Yun (SK hynix)
- Michael Huebner (FFI)
- Jim Kim (FFI)
- Jim Tseng (FFI)
- BK Lee (FFI)