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Introduction – Market Needs
• Temperature Accuracy keeps gaining importance in wafer testing
• Accurate thermal values are important for multiple applications
• Tendency to shift more thermal test from final test to wafer testing
• Still, temperature measurement is very complex and very hard to trace against standards

3Klemens Reitinger



“Absolute“ Accuracy – why is it new?
• Shift from final test to wafer test lowers the tolerance for the temperature generating 

device:
– One socket for one chip, one chuck for hundreds of chips

• New, innovative devices’ performance needs much tighter temperature tolerances 
– Gas sensor, 
– Temperature sensor

• Temperature sensitive part is within the device – how to measure ?
• Although the chuck has a very uniform temperature on the surface, in some test 

application it is relevant to prove the actual temperature in the chip
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Requirements Regarding Temperature Accuracy
• Every Chip shall be tested in a certain temperature range, uniformity is more important 

than absolute value
• Every chip has to be tested at a certain temperature, absolute value is more important 

than uniformity
• Every chip has to be tested in a certain range at a certain temperature, uniformity and 

absolute value are both important
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The Four Influencing Factors
• Stability
• Uniformity
• Repeatability
• Calibration
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• Stability is directly related to the control ability of the chuck system
• Environmental influences like probe tips, induced wattage or fans are overlaying and 

influencing the stability

Stability
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Chuck Alone – Long Term Stability
• 300°C: 1 day 13h less than 0,02°C drift
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Chuck Alone – Long Term Stability
• 150°C: 2h less than 0,02°C drift
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Chuck Alone – Long Term Stability
• 35°C: 12h less than 0,02°C drift
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Stability: Chuck in Prober
• Control off during stepping – see sawtooth at the edge!
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Temperature Uniformity
• Uniformity primarily depends on the chuck’s design (heater, cooler and controller)
• Depending on the environment, primary air flow
• Uniformity is dynamic! 

– Even the smallest controller correction will influence uniformity
• Types of Uniformity: static and dynamic 
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Static and Dynamic Uniformity
• Static: Sensors placed on the chuck and monitored
• Dynamic: Touchdown on sensor – stepping – monitoring profile of DUT
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Measuring Points 

1 2 3 4 5 6 7 8 9 Max Min Total

35°C
Static 35.110 35.128 35.105 35.040 35.050 35.043 35.087 35.098 35.102 35.128 35.040 0.088
Dynamic 35.116 35.118 35.108 35.024 35.041 35.072 35.091 35.095 35.106 35.118 35.024 0.094
Variation -0.006 0.010 -0.003 0.016 0.009 -0.029 -0.004 0.003 -0.004 0.016 -0.029 0.045

50°C
Static 50.092 50.104 50.106 50.052 50.073 50.038 50.050 50.083 50.065 50.106 50.038 0.068
Dynamic 50.070 50.112 50.103 50.040 50.069 50.050 50.040 50.081 50.088 50.112 50.040 0.072
Variation 0.022 -0.008 0.003 0.012 0.004 -0.012 0.010 0.002 -0.023 0.022 -0.023 0.045

70°C
Static 70.065 70.047 70.048 69.993 70.049 69.947 69.971 70.045 69.999 70.065 69.947 0.118
Dynamic 70.050 70.105 70.102 69.984 70.035 69.978 69.970 70.070 70.050 70.105 69.970 0.135
Variation 0.015 -0.058 -0.054 0.009 0.014 -0.031 0.001 -0.025 -0.051 0.015 -0.058 0.073



Simulation of Shielding (Without Shield)
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Simulation of Shielding (With Shield)
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Influence of Shielding
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Range 0,180 up to 
0,240 -> 0,060°C 
oscillating

Range 0,173 up to 
0,184 -> 0,011°C 
oscillating



Uniformity in Reality
Measurement with SenseArray Wafer shielded environment
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Uniformity Detail at - 40°C
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Uniformity Detail at 42°C
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Uniformity Detail at 80°C
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Uniformity Detail at 140°C
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Repeatability
• Chuck surface uniformity : DUT to DUT accuracy
• Power induction: DUT to DUT accuracy
• Differences in thermal contact : DUT to DUT accuracy
• Particles below wafer : Wafer to Wafer accuracy
• Test at multiple temperatures, chuck system needs to be back at exactly the same 

temperature: Lot to Lot accuracy
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Reachable Accuracies of Reference 
Thermometers

• Calibrated Single sensor instruments best in class: 0,5mK ± 0,1mK GUM at k=2 
• Calibrated Single sensor instruments typical: 2mK up to 70mK 
• Special calibrated singe sensor instruments: 2mK (up to +30°C) up to 45mK (up to 

+400°C) 
• Wafer embedded multiple Sensors, wired: 100mK, 60mK Sensor to Sensor
• Wafer embedded multiple Sensors, wireless: 200mK, including Sensor to Sensor
• Thermal camera: 

100mK calibrated to correct emission (!)
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Calibration Strategies (1)
Multiple Sensors embedded in a wafer
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• Easy to use
• Tool can be calibrated with no prober 

down time (second tool needed)
• High accuracy
• Fast measurement results

• Adding sensor to sensor accuracy
• Tool is expensive
• Difficult to calibrate
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Calibration Strategies (2)
Single Sensor Surface Thermometer
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• Easy to use
• Very accurate to calibrate
• Highest instrument accuracy
• No sensor to sensor variation
• Cost effective

• Adding application uncertainty
• Time consuming data collection
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Calibration Strategies (3)
Single Sensor Insertion Thermometer 
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• Less error in application
• Very accurate
• Shows closest value of chuck 

temperature as possible
• Highest instrument accuracy
• No sensor to sensor error
• Cost effective

• Limited uniformity information
• Maybe complicated to implement 

(constrains around the chuck in prober)
• Each additional hole in chuck lowers 

uniformity performance
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Calibration Strategies (4)
Contactless (IR camera)
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• Measuring surface 
• not sensor!

• Fast results

• Difficult to calibrate
• Very hard to use in accuracies below 1°C
• Accurate tool very expensive
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Monitoring Concepts (1)
• Multiple sensors in chuck
• Supports area specific accuracy
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Monitoring Concepts (2)
• In situ IR monitoring
• Supports real time temperature measurement of a DUT under load
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Now, How Accurate Can You Be?
• During test, typically, the chuck’s temperature is measured, not the device’s 

temperature
• Exceptions: 

– Sensor in device
– In situ IR measurement

• Both exceptions far from <1°C accuracy
• You always measure the temperature of the sensor – not the temperature of the device 

itself
• How accurate can a sensor inside the chuck be calibrated?
• How accurate is it to measure the chuck’s temperature?

– What is the difference between the chuck’s temperature and the wafer’s temperature?
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Thermal Accuracy Budget
• +35°C Reachable Accuracy without Calibration
• Example:
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Boundary Conditions

Prober Inside Temperature (°C) 30
thermal resistance between sensor and chuck (°C) 0,001
thermal resistance between sensor and chuck (°C) 0,01
Needle Temperature (°C) 30
Influence of Needle  (°C) 0,01

Absolute Accuracy on Wafer

°C °C
Calculation 35 35

Display -0,02 0,02
Sensor -0,0475 0.0475
Sensor to Chuck -0,005 -0,005
Controlling -0,03 0,03
Temperature Uniformity -0,1 0,1
Wafer to Chuck -0,05 -0,05
Needles -0,05 -0,05

Result MIN MAX Range
Reachable Accuracy 34,698 35,093
Deviation -0,303 0,093 0,396
Compensated 34,803 35,198 0,395
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Thermal Accuracy Budget

32

• +35°C Reachable Accuracy with Calibration
• Example: Boundary Conditions

Prober Inside Temperature (°C) 30
thermal resistance between sensor and chuck (°C) 0,001
thermal resistance between sensor and chuck (°C) 0,01
Needle Temperature (°C) 30
Influence of Needle  (°C) 0,01

Absolute Accuracy on Wafer

°C °C
Calculation 35 35

Display 0 0
Sensor 0 0
Sensor to Chuck 0 0
Controlling -0,03 0,03
Temperature Uniformity -0,1 0,1
Wafer to Chuck 0 0
Needles -0,05 -0,05

Result MIN MAX Range
Reachable Accuracy 34,820 35,080
Deviation -0,180 0,080 0,260
Compensated 34,87 35,13 0,26
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Thermal Accuracy Budget
• +200°C Reachable Accuracy without Calibration
• Example:
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Boundary Conditions

Prober Inside Temperature (°C) 30
thermal resistance between sensor and chuck (°C) 0,001
thermal resistance between sensor and chuck (°C) 0,01
Needle Temperature (°C) 30
Influence of Needle (°C) 0,01

Absolute Accuracy on Wafer

°C °C
Calculation 200 200

Display -0,02 0,02
Sensor -0,13 0,13
Sensor to Chuck -0,17 -0,17
Controlling -0,03 0,03
Temperature Uniformity -0,5 0,5
Wafer to Chuck -1,7 -1,7
Needles -1,7 -1,7

Result MIN MAX Range
Reachable Accuracy 195,750 197,110
Deviation -4,250 -2,890 1,360
Compensated 199,32 200,68 1,36
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Thermal Accuracy Budget
• +35°C Reachable Accuracy without Calibration
• Example:
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Boundary Conditions

Prober Inside Temperature (°C) 30
thermal resistance between sensor and chuck (°C) 0,001
thermal resistance between sensor and chuck (°C) 0,01
Needle Temperature (°C) 30
Influence of Needle (°C) 0,01

Absolute Accuracy on Wafer

°C °C
Calculation 200 200

Display 0 0
Sensor 0 0
Sensor to Chuck 0 0
Controlling -0,03 0,03
Temperature Uniformity -0,5 0,5
Wafer to Chuck 0 0
Needles -1,7 -1,7

Result MIN MAX Range
Reachable Accuracy 197,770 198,830
Deviation -2,230 -1,170 1,060
Compensated 199,47 200,53 1,06
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Conclusions and Outlook
• The demand of going below 1°C accuracy in 

Wafer Test exists
• Data collected on multiple systems within a 

year shows that very tight tolerance down to 
±0.1°C can be reached in a certain 
temperature range(0°C to 85°C)

• Chuck temperature uniformity and long term 
control stability are available

• Additional tools are needed to maintain this 
tight accuracy in production environment 

• The high accuracy thermal wafer probing has 
arrived in wafer probing
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• There is still work to do in the chuck at high 
and low temperature end

• There is work to do on the calibration method
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Thank You 
Q&A
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