

Absolute temperature accuracy, the rising trend on wafer test – Where are we today?

Klemens Reitinger ERS electronic GmbH

June 2-5,2019

Table of Contents

- Introduction
- Stability
- Uniformity
- Repeatability
- Calibration
- Conclusion / Summary
- Next steps
- Q&A

Introduction – Market Needs

- Temperature Accuracy keeps gaining importance in wafer testing
- Accurate thermal values are important for multiple applications
- Tendency to shift more thermal test from final test to wafer testing
- Still, temperature measurement is very complex and very hard to trace against standards

"Absolute" Accuracy – why is it new?

- Shift from final test to wafer test lowers the tolerance for the temperature generating device:
 - One socket for one chip, one chuck for hundreds of chips
- New, innovative devices' performance needs much tighter temperature tolerances
 - Gas sensor,
 - Temperature sensor
- Temperature sensitive part is within the device how to measure ?
- Although the chuck has a very uniform temperature on the surface, in some test application it is relevant to prove the actual temperature in the chip

Requirements Regarding Temperature Accuracy

- Every Chip shall be tested in a certain temperature range, <u>uniformity is more important</u> than absolute value
- Every chip has to be tested at a certain temperature, <u>absolute value is more important</u> than uniformity
- Every chip has to be tested in a certain range at a certain temperature, <u>uniformity and</u> <u>absolute value are both important</u>

The Four Influencing Factors

- Stability
- Uniformity
- Repeatability
- Calibration

Stability

- Stability is directly related to the control ability of the chuck system
- Environmental influences like probe tips, induced wattage or fans are overlaying and influencing the stability

Chuck Alone – Long Term Stability

• 300°C: 1 day 13h less than 0,02°C drift

Chuck Alone – Long Term Stability

• 150°C: 2h less than 0,02°C drift

Chuck Alone – Long Term Stability

• 35°C: 12h less than 0,02°C drift

Stability: Chuck in Prober

• Control off during stepping – see sawtooth at the edge!

Temperature Uniformity

- Uniformity primarily depends on the chuck's design (heater, cooler and controller)
- Depending on the environment, primary air flow
- Uniformity is dynamic!
 - Even the smallest controller correction will influence uniformity
- Types of Uniformity: static and dynamic

Static and Dynamic Uniformity

- Static: Sensors placed on the chuck and monitored
- Dynamic: Touchdown on sensor stepping monitoring profile of DUT

		Measuring Points											
		1	2	3	4	5	6	7	8	9	Max	Min	Total
35°C	Static	35.110	35.128	35.105	35.040	35.050	35.043	35.087	35.098	35.102	35.128	35.040	0.088
	Dynamic	35.116	35.118	35.108	35.024	35.041	35.072	35.091	35.095	35.106	35.118	35.024	0.094
	Variation	-0.006	0.010	-0.003	0.016	0.009	-0.029	-0.004	0.003	-0.004	0.016	-0.029	0.045
	Static	50.092	50.104	50.106	50.052	50.073	50.038	50.050	50.083	50.065	50.106	50.038	0.068
50°C	Dynamic	50.070	50.112	50.103	50.040	50.069	50.050	50.040	50.081	50.088	50.112	50.040	0.072
	Variation	0.022	-0.008	0.003	0.012	0.004	-0.012	0.010	0.002	-0.023	0.022	-0.023	0.045
70°C	Static	70.065	70.047	70.048	69.993	70.049	69.947	69.971	70.045	69.999	70.065	69.947	0.118
	Dynamic	70.050	70.105	70.102	69.984	70.035	69.978	69.970	70.070	70.050	70.105	69.970	0.135
	Variation	0.015	-0.058	-0.054	0.009	0.014	-0.031	0.001	-0.025	-0.051	0.015	-0.058	0.073

Simulation of Shielding (Without Shield)

Simulation of Shielding (With Shield)

Influence of Shielding

Uniformity in Reality

Measurement with SenseArray Wafer shielded environment

Uniformity Detail at - 40°C

Klemens Reitinger

Uniformity Detail at 42°C

Uniformity Detail at 80°C

Uniformity Detail at 140°C

Repeatability

- Chuck surface uniformity : DUT to DUT accuracy
- Power induction: DUT to DUT accuracy
- Differences in thermal contact : DUT to DUT accuracy
- Particles below wafer : Wafer to Wafer accuracy
- Test at multiple temperatures, chuck system needs to be back at exactly the same temperature: Lot to Lot accuracy

Reachable Accuracies of Reference Thermometers

- Calibrated Single sensor instruments best in class: 0,5mK ± 0,1mK GUM at k=2
- Calibrated Single sensor instruments typical: 2mK up to 70mK
- Special calibrated singe sensor instruments: 2mK (up to +30°C) up to 45mK (up to +400°C)
- Wafer embedded multiple Sensors, wired: 100mK, 60mK Sensor to Sensor
- Wafer embedded multiple Sensors, wireless: 200mK, including Sensor to Sensor
- Thermal camera:

100mK calibrated to correct emission (!)

Calibration Strategies (1)

Multiple Sensors embedded in a wafer

- Easy to use
- Tool can be calibrated with no prober down time (second tool needed)
- High accuracy
- Fast measurement results

- Adding sensor to sensor accuracy
- Tool is expensive
- Difficult to calibrate

Calibration Strategies (2)

Single Sensor Surface Thermometer

- Easy to use
- Very accurate to calibrate
- Highest instrument accuracy
- No sensor to sensor variation
- Cost effective

- Adding application uncertainty
- Time consuming data collection

Calibration Strategies (3)

Single Sensor Insertion Thermometer

- Less error in application
- Very accurate
- Shows closest value of chuck temperature as possible
- Highest instrument accuracy
- No sensor to sensor error
- Cost effective

- Limited uniformity information
- Maybe complicated to implement (constrains around the chuck in prober)
- Each additional hole in chuck lowers uniformity performance

Calibration Strategies (4)

Contactless (IR camera)

- Measuring surface
 - not sensor!
- Fast results

Difficult to calibrate
Very hard to use in accuracies below 1°C
Accurate tool very expensive

Monitoring Concepts (1)

- Multiple sensors in chuck
- Supports area specific accuracy

Monitoring Concepts (2)

- In situ IR monitoring
- Supports real time temperature measurement of a DUT under load

Now, How Accurate Can You Be?

- During test, typically, the chuck's temperature is measured, not the device's temperature
- Exceptions:
 - Sensor in device
 - In situ IR measurement
- Both exceptions far from <1°C accuracy
- You always measure the temperature of the sensor not the temperature of the device itself
- How accurate can a sensor inside the chuck be calibrated?
- How accurate is it to measure the chuck's temperature?
 - What is the difference between the chuck's temperature and the wafer's temperature?

• +35°C Reachable Accuracy without Calibration

• Example: Boundary Conditions

Prober Inside Temperature (°C) thermal resistance between sensor and chuck (°C) thermal resistance between sensor and chuck (°C) Needle Temperature (°C) Influence of Needle (°C) 30 0,001 0,01 30 0,01

		Absolute Accura		
		°C	°C	
lculation		35	35	
splay		-0,02	0,02	
ensor		-0,0475	0.0475	
ensor to Chuck		-0,005	-0,005	
ontrolling		-0,03	0,03	
emperature Uniformity		-0,1	0,1	
afer to Chuck		-0,05	-0,05	
eedles		-0,05	-0,05	
esult		MIN	MAX	Range
eachable Accuracy		34,698	35,093	
eviation		-0,303	0,093	0,3
ompensated		34,803	35,198	0,3
	SWTest J	une 2-5,	2019	

• +35°C Reachable Accuracy with Calibration

Example:

 \mathbf{O}

Boundary Conditions

Prober Inside Temperature (°C) thermal resistance between sensor and chuck (°C) thermal resistance between sensor and chuck (°C) Needle Temperature (°C) Influence of Needle (°C)

30 0,001 0,01 30 0,01

		Absolute Accura		
		°c	°C	
		35	35	
		0	0	
		0	0	
		0	0	
		-0,03	0,03	
		-0,1	0,1	
		0	0	
		-0,05	-0,05	
		MIN	MAX	Range
су		34,820	35,080	
		-0,180	0,080	0,260
		34,87	35,13	0,26
	SWTest J	lune 2-5,	2019	

• +200°C Reachable Accuracy without Calibration

• Example: Boundary Conditions

Prober Inside Temperature (°C) thermal resistance between sensor and chuck (°C) thermal resistance between sensor and chuck (°C) Needle Temperature (°C) Influence of Needle (°C) 30 0,001 0,01 30 0,01

	Absolute Accura	Absolute Accuracy off Waler		
	°c	°C		
Calculation	200	200		
Display	-0,02	0,02		
Sensor	-0,13	0,13		
nsor to Chuck	-0,17	-0,17		
trolling	-0,03	0,03		
perature Uniformity	-0,5	0,5		
er to Chuck	-1,7	-1,7		
eedles	-1,7	-1,7		
sult	MIN	MAX	Range	
eachable Accuracy	195,750	197,110		
eviation	-4,250	-2,890	1,	
ompensated	199,32	200,68	1	

SWTest | June 2-5,2019

1,360 1,36

- +35°C Reachable Accuracy without Calibration
- Example: Boundary Conditions

Prober Inside Temperature (°C) thermal resistance between sensor and chuck (°C) thermal resistance between sensor and chuck (°C) Needle Temperature (°C) Influence of Needle (°C) 30 0,001 0,01 30 0,01

Absolute Accuracy on Wafer

	°C	°C	
Calculation	200	200	
Display	0	0	
Sensor	0	0	
Sensor to Chuck	0	0	
Controlling	-0,03	0,03	
Temperature Uniformity	-0,5	0,5	
Wafer to Chuck	0	0	
Needles	-1,7	-1,7	
Result	MIN	MAX	Range
Reachable Accuracy	197,770	198,830	
Deviation	-2,230	-1,170	1,060
Compensated	199,47	200,53	1,06

Conclusions and Outlook

- The demand of going below 1°C accuracy in Wafer Test exists
- Data collected on multiple systems within a year shows that very tight tolerance down to ±0.1°C can be reached in a certain temperature range(0°C to 85°C)
- Chuck temperature uniformity and long term control stability are available
- Additional tools are needed to maintain this tight accuracy in production environment
- The high accuracy thermal wafer probing has arrived in wafer probing

- There is still work to do in the chuck at high and low temperature end
- There is work to do on the calibration method

Credits

- Miguel A. Resendiz (ERS)
- Bengt Haunerland (ERS)
- Patrick Mabinda (ERS)

Thank You 08A