

Enabling High-speed Loopback Tests for Serdes, PCIE Gen5/6 on Probe Using Embedded Capacitors on the MLO

Agenda

- Wafer Test: The Need for Speed!
- Embedded Components and MLOs
- Technology Overview: Enabling High-Speed Testing on Probe
- Design, Development and Measurement Test Setup
- Measured Performance and Simulation Correlation
- Performance Comparison ECMLO Vs. Traditional Probe PCB
- Reliability and Thermal Tests
- Conclusion

A New Paradigm

High-Speed Digital and RF Wafer Probing

High-Performance probe cores are available in the market

- High-density and high-performance MEMs type pins are available
- High-performance cores are available
 - Limited density with high performance
 - Limited number of dies

At probe, the high-speed digital signal traverses a series of interconnects. All interface hardware has its own sets of keep-outs.

Multilayer Organic (MLO) PCBs Essentially a PCB-based pitch translation technology

• Different from MLC (Multilayer Ceramic) transposers

Embedded Components Overview Physical capacitors embedded in the PCB board

- **DUT Pitch >= 0.4mm on final test ATE boards**
- 01005, 0201, 0402 and 0603 case sizes
- Capacitance values up to 2.2uF
- Embedding
 - Thin film resistors
 - Capacitors
 - Chip inductors
- Stacked capacitance allowed
- MLO embedding allowed with 01005 or 0201 case capacitors/resistors

Quaid Joher Furniturewala

Embedded Component Applications

Embedded capacitor for power integrity

- DUT Boards and MLOs with embedded components
- Embedded component interposers attached via invisipin interposer technology

High-Performance loopbacks

- Loop back capacitance
- RC/LC based bias tees

High-Performance probing and other applications

- Embedded resistors
- Embedded chip inductors

Solution: Embedding Loopbacks on MLO

Eliminates the extra layer of interconnects and reduces losses

- Capacitor is embedded in the center core of the MLO
- An optimized through via through the center core connects the capacitor to an RDL layer
- Mostly stub-free design because HDI technology enables performances at DC to higher frequencies
- High-density loopback component embedding is possible depending upon the device die map
- RC based or LC-based (chip inductors) biased-T loopback circuit is acceptable to enable high-performance loopback and ATE parametric testing

Test Vehicle: Design Details

MLO and Probe PCBs are designed using Allegro & APD for design layout and simulated using CST Microwave Studios

MLO Design

- 3+4+3 construction using the Highspeed GL102 material. 0.57mm thick
- 250um to 1000um pitch translation
- Capacitor embedded in the center core of the MLO
- HDI build stub-free design!
- Two MLO options
 - Loopbacks with broadband capacitors
 - Loopbacks with standard capacitors

Probe PCB Design

Copper Weight (Oz) Generic Name

- 12-Layer, 3mm thick board
- Broadband capacitor on the underside of the board
- Through hole board design with back-drilled vias
- High-performance meteor wave 4000 material
- Optimized PCB DUT launches and loopback structures for minimal loss possible

Lyr

Full 3DFS Modeling (MLO Loopback)

S-Parameters [Magnitude]

Modeled with broadband capacitors:

• **Broadband Capacitor P/N: 1005BB104MW4R0 / Passive Plus**

Quaid Joher Furniturewala

Full 3DFS Modeling (MLO & Probe PCB path)

Layout design for best case, thin PCB and optimized PCB stacking to show best case results

- Simulations included Solder ball attach between MLO and Probe PCB
- Broadband capacitor on the bottom side of the PCB
- Simulated with a 10 mil back-drill stub on through hole vias

S-Parameters [Magnitude]

Measurement Test Setup

Test Setup Includes:

- A 4-Port 70GHz Anritsu VNA/PNA
- 65 GHz 250um GSGSG & 250 GSG probes for C4 side loopback measurements
- Bench probe station with micro positioners
- **Probes were not de-embedded in measurements**
- Measured loopbacks on C4 side of the MLO
- MLO C4 side designed as GSGSG 250um pitch
- Measured full path on MLO only
- Measured full path from MLO to probe PCB and back

FWN 1+886(3 1552

MLO Loopback Measured Performance

PCIE Gen5/6 on Probe

Probes not de-embedded Ouaid Joher **Furniturewala**

MLO & Probe PCB Measured Loopback Path

Mostly resonance-free performance up to 5GHz – Limited frequency response

Performance Comparison

MLO loopback has a distinct advantage for HS signal routing with embedded loopbacks!!

Frequency / GHz

- Resonance observed due to:
 - Impedance discontinuity due to MLO to Probe PCB attach
 - Slightly longer back-drills than simulated values on the probe PCB fixture

Quaid Joher Furniturewala

Simulation and Measurement Correlation

Good correlation of simulated to measured performance for embedded loopbacks

Measured higher frequency return loss is higher as 250GSGSG probes are not de-embedded

Manufacturing Yield & Thermal Reliability Tests

- High yields: > 80% manufacturing yield for embedded components on MLOs
- Thermal reliability tests conduction as per IPC-600-TM method:
 - 3x & 6x reflow cycles
- Identical measured performance after 3x and 6x reflow cycles

Conclusion

- Embedded component MLO is a useful technology to enable digital and RF performance for probe
- Process shows a good correlation between simulated and measured performance on the loopback paths with ECMLO
- High manufacturing yields mean affordable technology and less turnaround time because of fewer fab re-spins
- Thermal reliability studies show similar performance and no failures after 6 reflow cycles
- Significant performance benefits over the traditional probe card routing approach
 - Enables 200G+ PAM4, PCIE Gen5/6 and other high-speed SerDes IPs on probe

Questions?

