

High Heat Dissipation: Facing New Challenges with High-Power Testing at the Wafer Level

Lane Huston Micron Technology Inc.

- Background
- Industry capability with high-heat dissipation
- Additional considerations
- Conclusions

Background

SWTest | June 5 - 7, 2023

 Micron's product portfolio requires a high variety of testing requirements & conditions.

Lane H<u>uston</u>

Memory Market Growth

Record memory & storage market growth by CY25 and beyond.

Lane Huston

How do these trends affect Probe?

How do these trends affect Probe?

Micron power requirement forecast

• Expect to see continued increases in required testing power.

What makes memory different?

• Explosion in memory testing conditions & requirements

Industry advancements needed

- Prober thermal control methods for high-heat dissipation must improve to meet the predicted testing power requirements.
 - Improved transient temperature response to high-power testing.
 - Decreased reliance on HTF's or creative alternative solutions.

• Investigations into removing excess probe card heat, either generated or added from the surrounding environment.

Industry capability with high-heat dissipation

Basic heat dissipation process in probe

Energy transfer in a typical coolant-based probe system

Heat Transfer from DUTs

 $k = thermal \ conductivity$ $H_C = conv. heat \ transfer \ coeficient$ $d_1 = distance \ between \ wafer \ \& \ coolant$ $d_2 = distance \ between \ wafer \ \& \ PC$

Primary

HD driver

SWTest | June 5 - 7, 2023

 $A_1 = surface area of wafer$ $A_2 = surface area of coolant piping$ $A_3 = surface area of probe card$ $T_x = Temperature$ 12

Industry thermal control systems

Continuous coolant flow

- Undercooling process
- Heater modulation for thermal control

Variable coolant flow

- Heater & cooling element balancing
- High fluid temperature differential

Continuous coolant flow uniformity

• Chuck uniformity is at the edge of our maximum specification.

Lane HIGST.

• Similar temperature patterns between chuck calibration data and wafer level

Variable coolant flow uniformity

• Stable chuck temperature uniformity is well within specification.

Lane Huston

• Wafer level temperature testing indicate little correlation with calibration data.

High-heat dissipation testing - Hot

Continuous coolant flow

- Slow response time to heat application
- Stable after reaching set point

High-heat dissipation testing - Hot

Variable coolant flow

- Fast reaction time to high-power loading
- Thermal instability after initial reaction

High-heat dissipation testing – Cold

Continuous coolant flow

- Slow response time to heat application
- Large temperature undershoot

High-heat dissipation testing – Cold

• Variable coolant flow

- High temperature spike during heat application
- Slow response time to heat application

Industry performance results

Performance Specification	Continuous Coolant Flow	Variable Coolant Flow	Micron's Requirements
High-heat dissipation capability	\checkmark	\checkmark	Ø
No process limit excursions	×	×	Ø
Chuck uniformity during low-power testing		\checkmark	Ø
Chuck uniformity during high-power testing		×	Ø
Flexibility with HTF options	×	\checkmark	Ø
Fast reaction time to applied power loads	×	\checkmark	Ø
Temperature stability during test	\checkmark	×	Ø

• Current industry solutions do not meet all our needs.

Additional considerations

Heat transfer fluid (HTF) challenges

• What is the HTF role in high-power testing?

 $Q = H_C A \left(T_2 - T_1 \right)$

• What main factors are considered for HTF selection?

Fluid specifications

• HTF solutions that match the required test range are limited.

Environmental sustainability & safety

- Limiting global warming potential
- Per- and polyfluoroalkyl substances (PFAS) elimination
- Flash point & flammability risk

High-power testing & probe cards?

- High-power testing is increasing card temperatures above their design specification.
- Primary cause of temperature gain and how to remove under consideration.

Conclusions

Summary

• Current industry thermal control methods display high-heat dissipation capability but do not meet all our requirements.

• Memory testing trends indicate that high-power testing has overtaken current industry high-heat dissipation capabilities.

• Probe card thermal management is a concern as testing power requirements will continually increase.

Thank you!

Acknowledgements:

Micron Technology: Kurt Guthzeit, Aaron Woodard, Brandon Iverson, Alistair Laing

Lane Huston

