

Challenges and Improvement Actions for HPC Wafer Testing

June <u>5 - 7, 2023</u>

Kenny Tang TSMC

TSMC Prope

Overview

- Introduction
- HPC Challenges and Improvement Action
 - High Force
 - High Power
 - High Temperature
- Summary

HPC Demand

• The demand for HPC (High Performance Computing) growth rapidly.

TSMC Prope

HPC Testing Challenges

• With the development of silicon node technology and advanced integration process, the device complexity increase.

HPC Testing Challenges

High Force, High Power, and High Temperature are the challenges for HPC testing.
Pin Count X1.3 0

- Observation
 - **For high pin count probe card, the significant decrease in AOT is caused by PCB deformation.**

- Improvement Action
 - Improve AOT/POT ratio to 43% from 30% by (1) Stiffener Structure Enhancement (2) Material Enhancement.

- Observation
 - > The non-uniform AOT is observed with high pin count testing.

Improvement Action

Enable 3D offset function to compensate chuck bending issue.

- Observation
 - > The higher tip burnt rate is observed in HPC testing.

<u>Current</u> > CCC (Current Carrying Capability)

Kenny Tang

SWTest | June 5 - 7, 2023

- Improvement Action
 - Hybrid probing: The probe with higher CCC is used in pitch > 100um.

- Observation :
 - > A thermal challenge comes from high current and high-power consumption testing, so heat dissipation and temp. control accuracy become very challenging and critical.

Improvement Action

1) Index move optimization: Index move is changed from short distance to long distance to improve PCB temperature uniformity.

Improvement Action

2) To enhance temp. control accuracy, the multiple sensor chuck has individual temp. controller.

Observation

Due to the CTE(Coefficient of Thermal Expansion) difference of materials, the alignment of the Probes with MLO pad and wafer bump shifts in high temperature conditions.

Improvement Action

Ke

> To improve the alignment, we can optimize below factors.

Parts	Key Factors	Controllable
MLO	Pad size	Ο
	Manufacture Tolerance	Ο
	CTE	X
Probe Head	Scaling	Ο
	СТЕ	X
Wafer	Probing Area	Ο
	Pitch	X
	CTE	X
	Testing temperature	X
	Bump size	X
Prober/ Chuck	CTE	X
	Alignment Technology	Ο
nny Tang	SWTest June 5 - 7. 2023	

- Improvement Action for (1) Probe to MLO pad alignment
 - 1) Control the scaling of MLO dimension toward negative tolerance.
 - 2) Enlarge MLO Pad size to prevent contact issue.
 - 3) Design scaled UD to compensate MLO thermal expansion.

- Improvement Action for (2) Probe to wafer bump alignment
 - 1) Constrain probing area.
 - 2) Design scaled LD to compensate wafer thermal expansion.

Kenny Tang

TSMC Proper

Improvement Action for (2) <u>Probe to wafer bump</u> alignment

3) Execute preheat function and total alignment before testing to make sure needle height and wafer position are stable after thermal expansion.

- Improvement Action for (2) Probe to wafer bump alignment
 - 4) Enable PTPA(Pad to Pin alignment) function to make sure precise alignment.

AS IS

If 1 pin shift have Probe Mark Shift Risk

TO BE(> 4 pins alignment) PTPA - Pad to Pin alignment

Probe Center (θ) = Pin data angle(θ) + Card angle(θ) + PTPA Offset(θ)

Kenny Tang

SWTest | June 5 - 7, 2023

Improvement Action for (2) <u>Probe to wafer bump</u> alignment

5) Enable PTPC(Pad to Pin check) function to forecast contact position and pre-alert before production.

Summary

• The demand of HPC chip increase significantly.

Kei

• The challenges and improvement actions are studied.

HPC Characteristics	Challenges	Improvement Actions
Force	PCB Deformation	Enhance stiffener structure
	Chuck Bending	Enable 3D offset function
Power	Tip burnt	Hybrid probe
	Temperature control	Index move optimization
		Multiple sensor and control zones
	Probe to MLO Pad alignment	Control the scaling of MLO dimension
		Enlarge MLO Pad size
Temperature		Design scaled UD
		Constrain probing area
	Probe to bump alignment	Design scaled LD
		Enable PTPA(Pad to Pin alignment)
		Enable PTPC(Pad to Pin check)
nny Tang	SWTest June 5 - 7. 2023	