

BUMP TEST SEMINAR and FUTURE µBUMP DEMAND RESEARCH

Overview

- Why needle force is such IMPORTANT for testing
- How we do
 - ANASYS Bump simulation
 - Bump Analysis System

What we do

- Bump 80
- Bump 40x70
- Bump 60
- Comparison between Bumps
- Summary 2023

Author

New tech Application Evolution

Bump sizes had decreased to around 100 microns, and today they can be as small as 30 microns or less.

Author

How to define the force range with application Bump Test @ incresed Force CRES(Ω)

How to define the force range with application Bump Test @ incresed Force -a/A CRes(Ω)

How to know the force range

ANASYS bump simulation

In mechanical analysis, the wafer bump itself is an elastic material and the external force it receives comes from the contact force provided by the elastic probe.
 Under the interaction of the two, the spring constants of the wafer bump and probe form a series-connected system of springs. Therefore, different combinations of wafer bump and probe of different materials or sizes will produce different equivalent spring constants. In this study, we use equipment measurement, mathematical modeling, and finite element analysis (FEA) simulation to observe the probe mark on the wafer bump. We simultaneously compare the factors that affect the difference in probe marks under various strengths of external force and establish a comprehensive and precise definition of the probe mark. We also provide clear rules for designing the contact force of the probe.

Real Bump Test

• At MPI, we use the Probe Analysis System (PAS) and Prober testing equipment to perform probe mark testing on single probes and complete probe cards. Through precise alignment of the equipment, researcher inspections, and large-scale data collection, as well as analysis software to summarize the test results, we obtain sufficient data feedback and apply it to the improvement or design of probe types in actual cases

Svv lest | June 5 - 7, 2023

Bump stimulation by AnSYS

- ANSYS bump simulation
 - Geometry
 - Dimensions
 - 3D model vs. 2D model
 - Material Properties
 - Young's Modulus
 - Yield Strength
 - Tangent Modulus
 - Meshes
 - Generally vs. Adaptively
 - Optimization
 - Boundary Conditions
 - Fixed Support
 - Force
 - Solve : Bump Deformation (x, y, z - direction)

Real Bump Test by PAS (Probe Analysis System)

Experimental conditions

- Instrument : Probe Analysis System
- Contact force by Bump Size ≥60um : 1 ~ 15 gf (increase by 1 gf.)
- Contact force by Bump Size <60um : 1 ~ 5 gf (increase by 0.5 gf.)
- Contact Time(sec): 1sec
- Touch Down Time : 1 time
- Temperature : 25°C ` 125 °C (Pre heat time : 90min)
- Samples : 10 valid PM result each condition
- Experimental Result
- PM Surface figure (valid PM result)
- Force vs. Bump a/A ratio

Author

Bump 80_ Stimulation & Bump test

• RT-EXP.

• HT-EXP.

- RT-CAE.

- HT-CAE

BUMP-D80 (RT & HT) ITD

finite element analysis (FEA) simulation to observe the probe mark on the wafer bump. We simultaneously compare the factors that affect the difference in probe marks under various strengths of external force and establish a comprehensive and precise definition of the probe mark. We also provide clear rules for designing the contact force of the probe.

Suggest Force Range @ Different a/A Condition:

Rump cize @ Condition	Force @ 25% a/A				
Bump size@ condition	Stimulation	ENG Test			
Bump 80@25°C	< 12 gf	< 12.1 gf			
Bump 80@125°C	<6.7 gf	<7 gf			

Force [gf]

SWTest | June 5 - 7, 2023

95%

90%

85%

75%

70%

65%

60%

55%

50%

45% 40% 35%

30% 25% 20%

10%

a/A

Bump 80_ Stimulation & Bump test

• Applied Force range: <15 gf

Test Parameter:

Author

- Test Temperature: 25°C/125°C
- CR data collect : Contact Time(1 sec)

Rumn size@ Condition	Suggested Force Range					
Bump size@ condition	by stable CRes	By 25% a/A	Stimulation@ 25% a/A			
Bump 80@25°C	2 gf <	< 12.1gf	< 12 gf			
Bump 80@125°C	4 gf <	< 7.0 gf	<6.7 gf			
SWTest June 5 - 7 2023						

Bump 80_ Bump Real test Data

• a/A %

• Instrument : KEYANCE VKX250 Software : MultiFile Analyzer

a/A[%]	1g	2g	3g	4g	5g	6 g	7 g	8g	9g	10g	11g	12g	13g	14g	15g
Laser Pic	•	a	8	3	۲		۲	۲	0						
RT-1st	2.0%	4.1%	5.1%	7.7%	8.5%	11.3%	14.3%	15.5%	16.7%	19.5%	24.0%	27.4%	29.8%	29.2%	36.8%
Laser Pic	8	•	9	3	۲				0	0	0	0	0	0	0
RT-2nd	2.4%	4.2%	5.3%	6.8%	8.7%	12.0%	13.1%	16.1%	18.5%	21.7%	22.1%	24.8%	24.2%	32.3%	35.9%
Laser Pic		3	۲	۲	۲	۲	۲	۲	۲		0	0	0	0	0
RT-3rd	3.0%	4.7%	5.5%	7.3%	9.7%	11.3%	13.4%	18.9%	18.0%	19.4%	22.1%	26.4%	30.5%	31.9%	33.1%
Laser Pic	۲			۲	3	9	۲	۲	0			\bigcirc	0	0	\bigcirc
RT-4th	4.1%	4.2%	5.6%	6.6%	8.2%	10.9%	12.3%	16.7%	18.6%	19.2%	23.1%	24.1%	26.6%	30.2%	32.3%
Laser Pic	*			۲	0								0		0
RT-5th	2.9%	4.7%	5.4%	7.3%	8.8%	9.6%	12.4%	16.8%	17.1%	18.9%	21.7%	21.7%	28.6%	31.4%	34.3%
MAX	4.1%	4.7%	5.6%	7.7%	9.7%	12.0%	14.3%	18.9%	18.6%	21.7%	24.0%	27.4%	30.5%	32.3%	36.8%
Ave.	2.9%	4.4%	5.4%	7.1%	8.8%	11.0%	13.1%	16.8%	17.8%	19.8%	22.6%	24.9%	27.9%	31.0%	34.5%
Min	2.0%	4.1%	5.1%	6.6%	8.2%	9.6%	12.3%	15.5%	16.7%	18.9%	21.7%	21.7%	24.2%	29.2%	32.3%
Stdev.	0.008	0.003	0.002	0.004	0.005	0.009	0.008	0.013	0.009	0.011	0.010	0.022	0.025	0.013	0.019

Bump 60_ Stimulation & Bump test

Test Parameter:

- Applied Force range: <10 gf
- Test Temperature: 25°C/125°C
- CR data collect : Contact Time(1 sec)
- Sample count : 10 pcs/each condition

Bump 40x70_ Stimulation & Bump test

Test Parameter:

- Applied Force range: <10 gf
- Test Temperature: 25°C/125°C
- CR data collect : Contact Time(1 sec)
- Sample count : 10 pcs/each condition

Sub-Summary Different Bump Size

As our experiment, Force suggestion by different bump

Bump Size	Available Force Range				
	@25°C	@125°C			
Bump 80 um	2.0 ~12.1 gf	4.0~7.0 gf			
Bump 60 um	0.4~7.0 gf	0.8~3.8 gf			
Bump 40x70 um	0.6~5.0 gf	1.0~3.2 gf			

- Applied force must be redesigned when bump size is different.
- Bump with larger size would have more wider force range could be applied on without fail testing.

What is the challenge on µBump test

What is a good Bump test:

What is the challenge on µBump test

How many the max alignment is:

"PASS" Probe Mark

- ✓ Within Bump Force range(CF)
- ✓ a/A ratio (< 25%)</p>
- Needle Tip Alignment (A)
- Appearance

A = Alignment between bump and needle tip
D = Diameter of Bump Size
d = Probe Mark Size
R = Diameter of Needle Tip
CF = Contact Force of a Needle

Margin Align

What is the challenge on µBump test

Cause of Misalignment

- Needle Offset
- Needle Tip Cleaning
- Wafer Bump tolerance

What force range µBump D30 should be at

Test Parameter:

- Applied Force range: <5 gf
- Test Temperature: 25°C/125°C

- CR data collect : Contact Time(1 sec)
- Sample count : 10 pcs/each condition

• Again!!!!

Applied force must be redesigned when bump size is different.

Summary

P/M Test@125℃

Author

Summary

 It must be extremely narrow range when bump size is smaller than 50um, such as our 30um bump case.

Author

Summary

SWTest | June 5 - 7, 2023

P/M Test@25℃

• When bump size goes down to 30um, the available force should range be tested, it would be affected by material, bump shape, manufacture process etc.

P/M Test@125℃

Force [gf]

Force [af]

Charlett

CResit

ara

13 14

10 11 12 13 14

Force [af]

CRE

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Chevical

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Work in future

- Base on those date, we've already known how to define applied force by pure force test.
- In future, we'll share more about probe mark distribution when we apply the data we have on probe card designing. Does it make any difference?

Zach Hsieh

Work in future

• Where is the upper limitation of ubump?

Zach Hsieh

23

Thank for your listening

